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Abstract

Additivity is one possible generalisation of the concept of extensivity of thermo-
dynamic quantities for finite physical systems in thermal equilibrium. This thesis
concerns itself with the additivity of the Gaussian model of a ferromagnet, original-
ly introduced by Berlin and Kac in 1952. The main focus of the thesis lies on the
treatment of the next-neighbour Gaussian model on finite lattice domains in two di-
mensions. Given a lattice domain D ⊂ Zd, the free energy βF of an additive system
at inverse temperature β can be written as

βF(D; β) =
d

∑
n=0

fn(β) M(d)
n (D) + R(D; β), (1)

where M(d)
n (D) are the d + 1 basic geometric measures of D, the so-called Minkow-

ski functionals. In two dimensions M(2)
0 (D), M(2)

1 (D) and M(2)
2 (D) are the volume,

the surface area and the Euler number of D, respectively. The geometric quantities
M(d)

n (D) for n ≥ 1 stem from the boundary ∂D of the system and are negligible
compared to the volume M(d)

0 (D) for infinitely large systems. The coefficients fi cor-
respond to thermodynamic quantities like pressure, surface tension, bending rigidi-
ties, etc. and only depend on the dimension d, the temperature and the spin inter-
action parameters. The remaining term R decays exponentially with the system size
|D| in the thermodynamic limit for non-critical temperatures. The main result of this
thesis is that the additivity of the Gaussian model, i.e. Eq. (1), holds

• for convex domains D in arbitrary dimensions, see Chap. II.2. The coefficients
fi are calculated explicitly analytically and discussed for d ≤ 3. For d > 3, the
tools for a straight-forward calculation of the coefficients fi are laid out.

• for convex domains with an applied homogeneous magnetic field in one and
two dimensions and a homogeneous boundary field in two dimensions, see
Chap. II.3. The corresponding modifications of the coefficients fi are calculated.
The magnetic field breaks the symmetry between the ferromagnetic and anti-
ferromagnetic spin-spin coupling.

On the other hand, the additivity breaks down

• at the critical temperature and/or spin coupling strength in arbitrary dimen-
sions, where the correlation length of the system diverges. In this case, the
remaining term R in Eq. (1) is O (log |D|) instead of exponentially decaying
with the system size, see Chap. II.2.

• for non-convex domains D in two dimensions. In this case, the Euler number
M(2)

2 (D) in Eq. (1) has to be replaced with the number of convex corners of
D multiplied with the coefficient f2/4 plus the number of concave corners of
D multiplied with the coefficient f̃2/4. The coefficient f2 is calculated analy-
tically, the coefficient f̃2 is determined numerically in Part. III. f̃2 is linearly
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independent of f0, f1, f2. All additional contributions still decay exponential-
ly in the thermodynamic limit for non-critical temperatures and spin coupling
parameters.

• for long-range spin-spin interactions. The free energy of a Gaussian spin chain
with quadratically decaying spin-spin interactions features a remaining term
R which decays as |D|−2 instead of exponentially, see Chap. IV.2. In general,
the additivity breaks down in the presence of long-range interactions.

Furthermore the partition sum of the next-neighbour Gaussian model on triangular
and hexagonal lattice types is calculated. Corresponding mathematical properties
and arising difficulties are discussed in Chap. IV.1.

Concluding, this thesis shows that the free energy of the next-neighbour Gaussian
model in two dimensions obeys a decomposition similar to Eq. (1), although the
extensive thermodynamic quantities of the model are in general not strictly additive.
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Zusammenfassung

Additivität ist eine Verallgemeinerung des Konzepts der Extensivität für endliche
physikalische Systeme im thermischen Gleichgewicht. Diese Arbeit untersucht die
Additivität des Gauß’schen Modells eines Ferromagneten, welches 1952 von Berlin
und Kac eingeführt wurde. Der Schwerpunkt der Arbeit liegt auf der Untersuchung
des zweidimensionalen Gauß’schen Modells mit nächste-Nachbar Wechselwirkun-
gen auf endlichen Gitterdomänen. SeiD ⊂ Zd eine endliche Gitterdomäne. Die freie
Energie βF eines additiven physikalischen Systems bei inverser Temperatur β hat
die Form

βF(D; β) =
d

∑
n=0

fn(β) M(d)
n (D) + R(D; β). (1)

M(d)
n (D) sind die d + 1 geometrischen Maße der Domäne D, die sogenannten Min-

kowski-Funktionale. In zwei Dimensionen sind M(2)
0 (D), M(2)

1 (D) und M(2)
2 (D) das

Volumen, die Oberfläche und die Euler-Zahl von D. Die Größen M(d)
n (D) mit n ≥ 1

sind geometrische Maße der Oberfläche ∂D von D und sind im Grenzwert unend-
lich großer Systeme verschwindend gering verglichen mit dem Volumen M(d)

0 (D).
Die Koeffizienten fi entsprechen thermodynamischen Größen wie Druck, Oberflä-
chenspannung und Biegesteifigkeit und hängen nur von der Dimension d des Sys-
tems, der Temperatur und der Art der Spin-Spin Wechselwirkung ab. Der Restterm
R verschwindet exponentiell mit der Systemgröße |D| ≡ M(d)

0 (D) im thermodyna-
mischen Limes. Ein wesentliches Ergebnis dieser Arbeit ist der Nachweis, dass das
Gauß’sche Modell unter folgenden Bedingungen additiv ist, d.h. Eq. (1) erfüllt:

• Für konvexe Domänen D in beliebiger Dimension für nicht-kritische Tempe-
raturen. Die Koeffizienten fi werden in Chap. II.2 explizit analytisch berech-
net und diskutiert für ein-, zwei- und dreiminesionale Systeme. In höheren
Dimensionen werden die relevanten mathematischen Größen des Gauß’schen
Modells weitgehend bestimmt, sodass die Berechnung der Koeffizienten fi ein-
fach erfolgen kann.

• Für konvexe Domänen mit einem räumlich konstanten magnetischen Feld in
einer und zwei Dimensionen, sowie mit einem konstanten Randfeld in zwei
Dimensionen. Die entprechenden Korrekturen der Koeffizienten fi werden in
Chap. II.3 explizit analytisch berechnet. Das Magnetfeld zerstört die Symme-
trie zwischen ferromagnetischer und antiferromagnetischer Spin-Spin Kopp-
lung.

Es weiteres Ergebnis dieser Arbeit ist, dass die Additivität des Gauß’schen Modells
unter folgenden Bedingungen nicht mehr erfüllt ist:

• Bei kritischer Temperatur, bei der die Korrelationslänge des Systems diver-
giert. In diesem Fall ist der Restterm R in Eq. (1) von der Ordnung O (log |D|)
und nicht mehr exponentiell verschwindend, siehe Chap. II.2.
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• Für nichtkonvexe Domänen D in zwei Dimensionen. In diesem Fall muss die
Euler-Zahl M(2)

2 (D) in Eq. (1) durch die Anzahl der konvexen Ecken von D,
multipliziert mit f2/4, plus die Anzahl der konkaven Ecken von D, multpli-
ziert mit einem Koeffizienten f̃2/4 ersetzt werden. Der Koeffizient f2 wird ana-
lytisch bestimmt. Der Koeffzient f̃2 wird in Part. III numerisch bestimmt. f̃2 ist
linear unabhängig von f0, f1, f2. Alle zusätzlichen Beiträge zur freien Energie
verschwinden exponentiell mit der Systemgröße bei nichtkritischer Tempera-
tur.

• Bei langreichweitigen Spin-Spin Wechselwirkungen. Die freie Energie des ein-
dimensionalen Gauß’schen Systems mit quadratisch abfallenden Wechselwir-
kungen weist einen Restterm R auf, der quadratisch – und nicht exponentiell
– mit der Systemgröße abfällt, siehe Chap. IV.2. Im Allgemeinen kann man bei
langreichweitigen Wechselwirkungen keine Additivität annehmen.

Darüber hinaus wird in Chap. IV.1 die Zustandssumme des Gauß’schen Modells auf
dem hexagonalen und dem Dreicks-Gitter berechnet. Es werden die entsprechenden
mathematischen Eigenschaften diskutiert.

Zusammenfassend wird im Rahmen dieser Arbeit gezeigt, dass, obwohl das zwei-
dimensionale Gauß’sche Modells mit nächste-Nachbar Wechselwirkung nicht strikt
additiv ist, die freie Energie als eine Linearkombination der geometrischen Maße der
grundlegenden Gitterdomäne geschrieben werden kann, ähnlich zu Eq. (1).
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Part I.

Additivity in thermodynamics





This thesis concerns itself with the notion of additivity of physical systems in ther-
modynamic equilibrium. In order to illustrate the basic ideas, we consider the grand
potential Ω[D; β, µ] of a fluid at inverse temperature β and chemical potential µ,
confined in the domain D ⊆ R3, which is a closed subset of the three-dimensional
space. One generally assumes that Ω is extensive, i.e. proportional to the volume
V(D) ≡ |D| of the system, with the proportionality constant equal to the negative
pressure p of the fluid:

Ω(D; β, µ) = −p(β, µ) |D|. (I.0.1)

In general, this is only true for the thermodynamic limit, i.e. for infinitely large sys-
tems without boundaries. If we consider a finite system, the grand potential, as a
function of the container D, depends on the shape of the boundary ∂D of D in a
complex way. However, in 1957 Hadwiger [5] developed a mathematical theorem,
which states that any motion invariant, continuous and additive function of a closed
subset D of R3 is a linear combination of the four basic geometric measures of D:
its volume, surface area, integrated mean and integrated Gaussian curvature of the
boundary ∂D, see [25], [21], [19] and [5] for details on Hadwiger theorem and inte-
gral geometry. We state the theorem and its prerequisites in a more rigorous way:
Consider a real mapping Ω,

Ω : K → R, D 7→ Ω(D) (I.0.2)

from the set K of finite unions of closed convex subsets of R. We say that Ω is

(i) Motion invariant: if rotating and/or translating the body D does not change the
value of Ω, i.e. for any combination g of rotations and translations

Ω(gD) = Ω(D).

(ii) Continuous: if for any sequence (Dn)n∈N , Dn ∈ K converging1 to D, the values
of the mapping converge, i.e.

lim
n→∞

Ω(Dn) = Ω(D).

(iii) Additive: if for any two bodies D1, D2 ∈ K the function of the union D1 ∪ D2
can be written as

Ω(D1 ∪D2) = Ω(D1) + Ω(D2)−Ω(D1 ∩D2).

Hadwiger’s Theorem states, that for any mapping Ω, which fulfills the conditions
(i)...(iii) there exist unique real coefficients f0, ..., fd, such that

Ω(·) =
d

∑
n=0

fn M(d)
n (·). (I.0.3)

Here, M(d)
n are the d so called Minkowski functionals, which in

1Convergence on the set K of convex subsets of Rd is defined in [5].
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• d = 1 correspond to the volume, i.e. the length, and the Euler number (number
of components of D, if D non-convex),

• d = 2 correspond to the surface area, the circumference length and the Euler
number of the body D,

• d = 3 correspond to the volume, the surface area, the integrated mean curva-
ture of ∂D and the integrated Gaussian curvature of ∂D,

• higher dimensions correspond to well-defined geometrical measures of D, see
[25], [21], [19] and [5] for details.

If we, for the time-being, assume that the grand potential Ω of a gas confined to a
containerD fulfills (i), ..., (iii), we straight-forwardly obtain a geometric decomposi-
tion of Ω as a linear combination of d geometric measures. The coefficients fn of the
linear combination correspond to thermodynamic functions like pressure, surface
tension and bending rigidities. This would allow for a potent description of thermo-
dynamics of confined systems. One can ask: For which physical systems does an ex-
tensive thermodynamic potential fulfill the prerequisites (i)...(iii)? It is reasonable to
expect that for sufficiently smooth interaction potentials (ii) is fulfilled, i.e. the grand
potential is continuous as a function of shape of the container D. Also, in absence
of external fields like gravitation, one can easily prove that Ω is motion-invariant,
such that (i) is also fulfilled. However, the condition of additivity turns out to be
more complicated. Let us consider a real gas confined in the container D = D1 ∪D2,
where D1, D2 are two separate containers: D1 ∩D2 = ∅, Ω(D1 ∩D2; β, µ) = 0. The
grand potential can be written as

Ω(D1 ∪D2; β, µ) = Ω(D1; β, µ) + Ω(D2; β, µ) + ∆Ω,

Where ∆Ω stems from the interaction of the particles in D1 with the ones in D2 and,
in general, does not vanish, meaning that Ω is non-additive. However, motivated
by the elegance and simplicity of Hadwiger’s theorem, we formulate a more general
version of the decomposition Eq. (I.0.3): Assume D ⊂ Rd is the container, t, λ ∈
R, t > 0, Ω the relevant extensive thermodynamic potential (for instance, we neglect
all variables exceptD). With λD ⊂ R we denote the containerD, scaled by the factor
λ.

Ω(λD) =
d

∑
n=0

fd M(d)
n (D) λn +O

(
e−t λ

)
, as λ→ ∞. (I.0.4)

The equality sign here refers to asymptotic equality in the limit of large scaling pa-
rameter λ. The first sum on the right-hand side corresponds to Eq. (I.0.3) from Had-
wiger’s theorem, the additional contribution accounts for any corrections to Had-
wiger’s theorem, which we assume to decay exponentially with the size λ of the sys-
tem. Our central question now is: Which physical systems obey the decomposition
Eq. (I.0.4), i.e. are “almost additive”? The validity of this description has been tested

2



I.1. Lattice containers and their geometrical measures

in [13], it has been applied, among other fields, to protein folding in [22] and solva-
tion of complex molecules in [18]. The main focus of this thesis lies on the question
of additivity of the Gaussian model of ferromagnetism, which is tightly related to
the spherical and the Ising models. To illustrate the underlying concepts, we treat
real diluted gases and the Ising model within the framework of the decomposition
Eq. (I.0.4). However, we start by discussing different possibilities to define geomet-
rical measures of lattice containers.

I.1. Lattice containers and their geometrical measures

The main focus of this thesis lies on the treatment of the two-dimensional Gaussian
model within the geometrical interpretation of its partition sum which goes hand in
hand with the decomposition Eq. (I.0.4). The purpose of this section is to present
and discuss different possibilities to define geometrical measures like volume, sur-
face area and integrated curvatures of lattice domains. Furthermore, we briefly dis-
cuss the impact of different definitions of geometric measures on the decomposition
Eq. (I.0.4). Let us consider a simple rectangular N ×M lattice, e.g. the one depicted
in Fig. I.0.1. Throughout this thesis, when talking about geometrical properties of
this lattice, we refer to it as the “lattice container” or “lattice domain”. Within the
framework of a typical lattice model a spin is attached to each lattice site, spins be-
ing any real numbers in the case of a Gaussian system and from the set {−1,+1}
in the case of an Ising system. When talking about the geometrical properties of

N

M M

N

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

Figure I.0.1.: Left side: N×M lattice container. A spin is attached to each lattice site.
Right side: illustration of the geometrical measures of the container –
the shaded area corresponds to the volume of the system. The red thick
line is the boundary of the system, its length corresponds to the surface
area of the container.

the container in Fig. I.0.1, the intuitive approach would suggest that the volume of
the container grows with the particle number, i.e. the number of lattice sites – and
thus would correspond to the shaded area. On the other hand, one would expect
the surface area to grow linearly with the circumference length – the length of the

3



thick red line in Fig. I.0.1. The third basic geometric measure of two-dimensional
domains is the Euler number which can be calculated as the number of components
of the domain minus the number of holes of the domain. The Euler number is il-
lustrated in Fig. I.0.2. It is important to point out that, once the lattice domain is
chosen, the Euler number stays constant when the domain is scaled up in the ther-
modynamic limit, e.g. the Euler number of the N ×M rectangular lattice domain is
1, independent of N, M. Since the goal of this thesis is to obtain a decomposition of

Figure I.0.2.: Illustration of the Euler number of a lattice container. The Euler number
is the number of components of the domain minus the number of holes
of the domain. The lattice on the left side has one component and zero
holes. The lattice in the middle features one component and one hole
– and thus the Euler number of zero. To raise the Euler number above
1, one has to introduce additional components to the lattice domains –
the lattice domain on the right hand side consists of two components
and zero holes and has the Euler number 2.

the free energy of the Gaussian system as a linear combination of the basic geometric
measures of the underlying lattice domain, it is important to point out that there is
a certain freedom in the choice of the exact definition of these geometric measures:
Considering the N × M lattice, one could define the volume of the system as NM
and the surface area as 2(N + M). The Euler number is constant, independent of
N, M and is always equal 1. Assuming Eq. (I.0.4) holds, one would obtain the free
energy F (omitting all arguments except the geometrical measures)

F = (volume) f0 + (surface area) f1 + (euler number) f2

= NM f0 + 2(N + M) f1 + f2, (I.0.5)

with the volume, surface, and corner coefficients f0, f1, f2 respectively. These co-
efficients do not depend on the shape and the size of the lattice domain. Alterna-
tively, one could define the geometric measures, as suggested in Fig. I.0.1: the vol-
ume would be (N − 1)(M − 1) and the surface area 2(N + M − 2). This would
merely lead to a redefinition of the thermodynamic coefficients fi:

F = (volume) f̃0 + (surface area) f̃1 + (euler number) f̃2

= (N − 1)(M− 1) f̃0 + 2(N + M− 2) f̃1 + f̃2. (I.0.6)
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I.2. Virial expansion of real gases

The new coefficients f̃i read

f̃0 = f0,

f̃1 =
2 f1 + f0

2
,

f̃2 = f2 + f0 + 4 f1.

This freedom in the definition of the geometrical measures is universal and can be
applied to other systems than lattice systems, see [13], [10] for examples. One should
point out that this freedom of definition is facilitated by considering all geometric
contributions to the free energy: Neglecting the surface and/or the curvature contri-
butions from Eq. (I.0.4) would lead to ambiguities in the definition of the volume of
the container. For the purpose of this thesis, all definitions of the geometric measures
which fulfill the following rules for a N ×M lattice are equivalent:

• The volume is a quadratic and positive function of the variable (N, M).

• The surface area is a linear positive function of (N, M)

• The Euler number is 1.

The definition of geometric measures of more complicated lattice domains should
follow from the definition of these measures for the N ×M lattice. Concluding, one
can say that the choice of the definition of geometric measures of the underlying do-
main has no impact on the physical properties of the system. Any redefinitions of the
geometric measures should lead to redefinitions of the thermodynamic coefficients
fi as linear combinations of each other. The geometric measures of lattice domains
in higher dimensions (and in one dimension) can be defined in a similar matter and
obey similar rules.

I.2. Virial expansion of real gases

Consider a d-dimensional gas consisting of identical particles of mass m confined
in the container D. The particles interact via a spherically symmetric two-particle
potential U. We choose the grand-canonical approach to describe the problem. Our
starting point is the grand-canonical partition sum ZG.C.(D; β; µ) with the inverse
temperature β and the chemical potential µ as native variables:

ZG.C.(D; β, µ) =
∞

∑
N=0

zN

N!
QN

λd N
T

, (I.0.7)

5



where we use the following conventions:

f = exp (−β U)− 1, is the Mayer- f -function,

λT =

√
2 π h̄2

m kBT
, is the thermal wavelength,

z = exp(β µ), is the fugacity,

QN =
∫
D

ddr1...
∫
D

ddrN

N

∏
i<j

(
1 + fi,j

)
is the N-particle configuration integral.

Since evaluating ZG.C. for arbitrary interactions is a difficult task, we consider the
limit of small z using a virial expansion, see [6], [8], which for bulk fluids corre-
sponds to the low-density limit. For the expansion up to the order z2, we need the
first three configuration integrals:

Q0 = 1,
Q1 = |D|,

Q2 = |D|2 +
∫
D

ddr1

∫
D

ddr2 f1,2 = |D|2 + b2,

with the second virial coefficient b2. The grand potential Ω reads

β Ω(D; β, µ) = − log ZG.C.(D; β; µ) = β Ωideal(D; β, µ)− 1
2

z2 b2(D; β) +O(z3),

where β Ωideal = −z |D| is the ideal-gas contribution. The fact that the system is
finite is mirrored in the coefficient b2. In [2], b2 was examined for finite-range in-
teractions U (meaning U(r) = 0 for distances larger than a finite r ∈ R+) via a
curvature expansion of ∂D. Using the definition

fi :=
∫

Rd
ddr f (r) |r|i+1−d, (I.0.8)

one can summarise the results for d = 3 as following: let λ ∈ R, we omit all argu-
ments of b2, except D. For λ→ ∞, we obtain

b2(λD) = |D| f2 λ3 − |∂D|
4

f3 λ2 +
K(D)

48
f5, if D is a ball,

b2(λD) = |D| f2 λ3 − |∂D|
4

f3 λ2 +O
(
λ0) , if ∂D is smooth,

b2(λD) = |D| f2 λ3 − |∂D|
4

f3 λ2 +
4 H(D)

3π2 f4 λ− K(D)
8π2 f5, if D is a cuboid.

Here we assume that the two-particle potential U is such that all appearing coeffi-
cients fi are finite. K(D), H(D) denote the Euler number and the integrated mean
curvature of ∂D, which equals π/4× (total edge length of D) for cuboids . Remark-
ably, the series in λ terminates at λ0 for spherical and cuboid containers. While the
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I.3. Spin Ising model

first both results are in agreement (the first result being a special case of the second
one), they are both in conflict with the third result – of course only if we assume the
universal validity of the decomposition Eq. (I.0.4). Nevertheless, these results yield
a geometric decomposition, consistent with Eq. (I.0.4), of the grand potential Ω in
the low fugacity limit.

Additionally, in [13] König, Roth and Mecke considered a three-dimensional hard
spheres gas. Using density functional theory they have shown that the grand poten-
tial Ω(D; β, µ) of a hard spheres gas confined in a container D at temperature β and
chemical potential µ is a linear combination of the four Minkowski functionals of D,
i.e. the volume, the surface area, the integrated mean and the integrated Gaussian
curvature (which is the Euler number). The calculations were carried out for planar,
cylindric and spherical confining geometries D. The main result states that higher
powers of local curvatures beyond the Gaussian curvature, integrated over the sur-
face ∂D of D do not contribute to the grand potential and thus the decomposition
Eq. (I.0.3) is complete and not a truncated power series.

I.3. Spin Ising model

Consider a one-dimensional spin Ising model with next-neighbour interactions con-
sisting of N spins s1, ..., sN and the boundary spins s0, sN+1 which are not part of
the system. The spin interactions are characterised by the ferromagnetic interaction
constant J < 0 with K := −βJ. One can calculate the partition sum Z and the free
energy βF in a straight forward way for any choice of boundary conditions and any
temperature 0 < β < ∞:

βF(N, β) = N f0(β) + f1(β) +O
(

e−λN
)

. (I.0.9)

The coefficients f0, f1 and the correlation length λ are independent of the system
size N and read

λ = − log tanh(K), (I.0.10)
f0 = − log 2 cosh K, (I.0.11)

f1 =

{
0 , for periodic b.c.
log cosh K−∑s∈{s0,sN+1} log cosh Ks , for s0, sN+1 ∈ R.

(I.0.12)

We interpret N as the volume of the system. The surface area is either zero in the
case of periodic boundary conditions or 1 for fixed boundary spins. This result mir-
rors the decomposition Eq. (I.0.4): All contributions to the free energy beyond the
geometric contributions vanish exponentially in the thermodynamic limit.

As another example, consider the two-dimensional Ising model with next-neighbour
interactions on a N ×M rectangular lattice. Let the interaction constant in both di-
rections be K = −βJ > 0. We start with toroidal boundary conditions, i.e. the N-th

7



spin column is interacting with the first spin column and the M-th spin row is inter-
acting with the first spin row. The exact partition sum of this system was calculated
by Onsager, [16], a detailed calculation can be found in [9]. The free energy reads:

βF(M, N, β) = MN f0(β) + R(M, N, β). (I.0.13)

The coefficient f0 reads

f0 = − 1
2π2

∫ π

0
dϕ

∫ π

0
dΘ log

[
4 cosh2 2K− 4 sinh 2K (cos ϕ + cos Θ)

]
. (I.0.14)

The system features a magnetisation phase transition at the critical temperature Tc
given by 2Kc = sinh−1(1). For non-critical temperatures, the following identity
holds for the remaining term RN , as the system grows in the thermodynamic limit
M, N → ∞, M/N = const.:

RN(β) =

{
O
(
e−λN) , T > Tc

log 2 +O
(
e−λN) , T < Tc.

(I.0.15)

The inverse correlation length λ reads

λ = log 2 +
1
π

∫ π

0
dϕ log

(
cosh2 2K
sinh 2K

− cos ϕ

)
. (I.0.16)

We interpret MN as the volume of the system and say that the surface area of the
system and the Euler number vanish due to toroidal boundaries. Then this result is
in agreement with the decomposition Eq. (I.0.4): The free energy is given by the vol-
ume contribution, the remaining term R decays exponentially in the thermodynamic
limit and features the additional contribution log 2 for sub-critical temperatures due
to the phase transition.

In the next example we consider a N ×M Spin Ising system with following bound-
ary conditions: periodically connected in the horizontal direction, i.e. N-direction,
(+−) boundary spins along the upper border (so N has to be even), (+) boundary
spins along the lower border. The partition sum Z of this system was calculated in
[12]:

Z = (4 sinh 2K)
MN

2

N
2

∏
j=1

M

∏
k=1

exp
[

f
(

π
2j− 1

N
, π

k
M + 1

)]
, (I.0.17)

f (x, y) = log

[
cosh2 2K
sinh 2K

− cos x− cos y

]
. (I.0.18)

The free energy can be evaluated using the Euler-Maclaurin summation formula, see
Sec. A.4:

βF = MN f0 + N f1 + R(N, M), (I.0.19)
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I.4. Outline

where the volume coefficient f0 is the same as in Eq. (I.0.14). The coefficient f1 reads

f1 = − 1
2π2

∫ π

0
dϕ

∫ π

0
dΘ log

cosh2 2K
sinh 2K − cos ϕ− cos Θ√(

cosh2 2K
sinh 2K − cos ϕ

)2
− 1

. (I.0.20)

We interpret the coefficient f1 as the surface coefficient and the contribution N f1 as
the surface contribution to the free energy. The Euler-Maclaurin summation formula
states that the remaining term R(N, M) decays exponentially with the system size in
the thermodynamic limit, see Sec. A.4.

I.4. Outline

The main goal of this thesis is to analyse the Gaussian model with respect to its ad-
ditivity and the question whether this model obeys a geometric decomposition like
Eq. (I.0.4). The layout of this thesis is as following: We start with the general defini-
tion of the Gaussian model and its relation to the spherical and the Ising models in
Chap. II.1. In Chap. II.2, we study the basic solution of the Gaussian model with dif-
ferent boundary conditions in arbitrary dimensions for convex containers and the
underlying mathematical properties. We introduce a magnetic field in Chap. II.3
and analyse its contribution to the partition sum of the one and two-dimensional
Gaussian model. In Part. III we consider the two-dimensional Gaussian model on
non-convex lattice domains, starting with developing and presenting analytic tools
suitable for this task in Chap. III.1. We reduce the evaluation of the partition sum of
the Gaussian model on a large class of non-convex lattice containers – the “properly
scaling” containers – to the partition sum of the most simple non-convex container.
Furthermore, we give examples of non-convex containers which can not be treated
with the developed methods and lay out alternative ways to approach the calcula-
tion of the corresponding partition sums. Finally, we evaluate the partition sum of
the Gaussian model on “properly scaling” domains numerically. In Part. IV, the last
part of this thesis, we study generalisations and extensions of the basic Gaussian
model: We examine the impact of different lattice types and different interaction
types on additivity and the vanishing remainder terms in Eq. (I.0.4).
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Abbreviations, symbols and notations

Given a function f : M→ R, x 7→ f (x), with M = R or M = N, the Landau symbol
O is defined as

f (x) = O (g(x)) for x → x0 :⇔ lim sup
x→x0

f (x)
g(x)

< ∞. (I.0.21)

Convention: We say the function f is exponentially decaying for x → ∞ if a real
positive number λ > 0 exists such that

f (x) = O
(

e−λx
)

, as x → ∞, or if (I.0.22)

f (x) = O
(

x−k
)

, ∀k ∈N, as x → ∞. (I.0.23)

Additionally, the notation

f (x) = g(x) +O (h(x)) , for x → x0 (I.0.24)

refers to asymptotic equality, i.e.

f (x) = g(x) +O (h(x)) , for x → x0

:⇔ f (x)− g(x) = O (h(x)) , for x → x0. (I.0.25)

We denote the set of N ×M matrices with matrix entries from the set A with

Mat(N ×M, A). (I.0.26)

For a matrix M ∈ Mat(N × N, R) we denote the determinant with

|M| := detM. (I.0.27)

The notations

diag(a1, ..., aN) and
diag(an)n=1,...,N and
diag(an).

denote a N × N matrix with the diagonal entries a1, ..., aN , starting with a1 in the
upper left corner. All other entries are zero. The notation diag(a) denotes a diagonal
matrix with a in its diagonal entries.
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Part II.

Gaussian model of magnetism





II.1. Introduction and relation to the
spherical and the Ising models

In this section, we introduce the next-neighbour Gaussian model of ferromagnetism,
define the partition sum and outline the main mathematical problems occurring dur-
ing its evaluation. The Gaussian and the spherical model were originally introduced
in [7].

We consider |D| lattice sites, confined to the domain D, which is a subset of Zd.
Here, d refers to the space dimension we are considering. At each lattice site we
assign a spin s ∈ R. We denote the entity of all spins with the vector (s1, ..., s|D|) ≡ s.
The Hamiltonian −βH of the Gaussian model in units of kBT reads

−βH :=

{
R|D| −→ R

s 7→ −∑N
i=1 s2

i + K ∑〈i,j〉 sisj.

The summation 〈i, j〉 runs over all pairs si, sj of next neighbours and takes the
boundary conditions into account. The Hamiltonian is quadratic as function of the
spin s and thus can be written using a symmetric matrix M ∈ Mat (|D| × |D| , R):

−βH = s t M s. (II.1.1)

The dimension of the system, the boundary conditions and the geometry of the con-
tainer are from now on encoded in the matrix M. Since M is symmetric, an orthonor-
mal Matrix T and and a |D|-tuple of eigenvalues (λ1, ..., λ|D|) ∈ R|D| exist, such that

Tt MT = diag(λ1, ..., λ|D|). (II.1.2)

We define the partition sum Z of the system as

Z := π−
|D|
2

∫
R|D|

d|D|s exp
(
s t M s

)
. (II.1.3)

It should be noted that the factor π−|D|/2 is merely a convenient normalisation and
does not bear a physical meaning. To evaluate the integral, we carry out the coordi-
nate transformation x = Tts:

Z = π−
|D|
2

∫
R|D|

d|D|x exp

(
|D|

∑
i=1

λix2
i

)
. (II.1.4)
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II.1. Introduction and relation to the spherical and the Ising models

Obviously, for the partition sum to stay well-defined and finite, the matrix M has to
be negative definite, i.e. all eigenvalues λi have to be negative. With this assumption,
we obtain the partition sum and the free energy F:

Z = π−
|D|
2
|D|

∏
i=1

√
π
|λi | =

1√
|detM|

, (II.1.5)

βF = − log Z = 1
2 log |det M| = 1

2

|D|

∑
i=1

log |λi|. (II.1.6)

The partition sum of the system is given by the determinant of the interaction matrix
M.

Relation to the Ising and the spherical models

Apparently, the Gaussian model is similar to the Ising model. While the Ising model
features discreet degrees of freedom si ∈ {−1, 1}, the Gaussian model relaxes this
constraint to continuous degrees of freedom si ∈ R. This turns the partition sum
from the trace of a 2|D| × 2|D| transfer matrix (see, for example [9]) to the determi-
nant of a |D| × |D| interaction matrix, making the model much more accessible for
analytic calculations. One apparent difference between the Hamiltonians of both
models, the self-interaction

−
N

∑
i=1

s2
i (II.1.7)

between the degrees of freedom in the Gaussian model has to be introduced, as it
turns out, to assure that the interaction matrix M is negative definite and the parti-
tion sum well defined. While being easier to calculate, the Gaussian model lacks one
of the most important features of the Ising model: a phase transition. However by
slightly modifying the Gaussian model, we arrive at the spherical model, which has
a mean-field phase transition. Instead of integrating the spins over the whole space
R|D|, we restrict the integration to the sphere ∑i s2

i = |D|. The partition sum Zs of
the spherical model reads, up to a normalisation factor,

Zs =
∫

∑i s2
i =|D|

d|D|s exp
[
s t (M + 1) s

]
. (II.1.8)

It should be noted that this restriction naturally leads to the fact, that

∑
i

s2
i = |D|, (II.1.9)

which is also a property of the Ising model. To make the connection between the
Gaussian and the spherical model obvious, we rewrite the condition ∑i s2

i = |D|
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using a δ-function:

Zs =
∫

R|D|
d|D|s exp

[
s t (M + 1) s

]
δ

(
∑

i
s2

i − |D|
)

=
∫

R|D|
d|D|s exp

[
s t (M + 1) s

] ∫
R

dα exp

[
−i α

(
∑

i
s2

i − |D|
)]

. (II.1.10)

One can interchange the order of integration and evaluate the partition sum, see [7]
for detailed calculation. From the above expression, one can already recognise that
all important features of the spherical model are encoded in the underlying Gaussian
model. Thus, to study a possible geometric decomposition of the free energy of the
finite-size spherical model, one has to closely examine the corresponding Gaussian
model.
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II.2. Basic solution for convex lattice
domains in arbitrary dimensions

In this section we discuss the free energy of the Gaussian model for convex, i.e. rect-
angular, domains D in arbitrary dimensions. To study boundary contributions (like
surface tension) and corner contributions to the partition sum and the free energy,
we consider different boundary conditions. In particular, we consider free boundary
conditions and boundary conditions with different types of periodicity in d = 1 and
d = 2. For d = 3 we only outline the solution for arbitrary boundary conditions,
since the detailed solution turns out to be straight forward after studying d = 1 and
d = 2. For higher dimensions, we present the eigenvalues of the interaction ma-
trix for free boundary conditions, which allow for the calculation of the free energy.
Furthermore, we carry out a virial expansion of the Gaussian model in d = 1. The
mathematical tools required for this section, e.g. the eigenvalues, eigenvectors and
the inverse of the interaction matrices are derived and discussed in detail in Sec. A.2.

II.2.1. One dimension

We consider a string of N spins si ∈ R, i = 1, .., N. The goal is to calculate the free
energy for periodic and free boundary conditions.

II.2.1.1. Periodic boundary conditions

We apply periodic boundary conditions: The N-th spin is interacting with the first
spin, see Fig. II.2.1. The Hamiltonian reads

−βH = −
N

∑
i=1

s2
i + K

N

∑
i=1

sisi+1, sN+1 ≡ s1. (II.2.1)

1 2 N−1 N 1

Figure II.2.1.: Periodic Gaussian chain consisting of N spins. Black dots correspond
to spins. Every two neighbour spins interact with each other. Addi-
tionally, the first spin interacts with the N-th spin.
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

Interaction matrix and its eigenvalues

The interaction matrix Mp ∈ Mat (N × N, R) of the system reads.

Mp =



−1 K
2 0 · · · 0 0 K

2
K
2 −1 K

2 · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 −1 K

2
K
2 0 0 · · · 0 K

2 −1


(II.2.2)

According to Sec. A.2, the eigenvalues λn read:

λn = −1 + K cos
(
2π n

N

)
, n ∈ {1, ..., N}. (II.2.3)

In order for the partition sum to be well defined, all eigenvalues have to be negative.
We have to choose |K| < 1 to guarantee this for all system sizes N ∈ N. Thus, we
obtain all eigenvalues of Mp with the physical condition of negative eigenvalues

λn = −1 + K cos ϕn, ϕn = 2π n
N , n ∈ {1, ..., N} , (II.2.4)

|K| < 1.

Calculating the free energy

The free energy Fp of the system reads

βFp = 1
2

N

∑
n=1

log |λn| = 1
2

N

∑
n=1

log (1− K cos ϕn) . (II.2.5)

We apply the trapezoidal rule for periodic functions, see Sec. A.4

βFp = N
4π

∫ 2π

0
dϕ log (1− K cos ϕ) + R(N, K). (II.2.6)

The remaining term R vanishes faster than any integer power of N:

R(N, K) = O
(

N−k
)

, ∀k ∈N, as N → ∞. (II.2.7)

Rewriting the free energy, we obtain

βFp = N
2π

∫ π

0
dϕ log (1− K cos ϕ) + R(N, K)

=N
2 log

1 +
√

1− K2

2
+ R(N, K). (II.2.8)
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II.2.1. One dimension

II.2.1.2. Free boundaries

In the next step, we consider a Gaussian spin chain with free boundary conditions.
The Hamiltonian reads

−βH = −
N

∑
i=1

s2
i + K

N−1

∑
i=1

sisi+1. (II.2.9)

Interaction matrix

The interaction matrix Mf ∈ Mat
(
RN ×RN) is Toeplitz and has the form

Mf =



−1 K
2 0 · · · 0 0 0

K
2 −1 K

2 · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 −1 K

2
0 0 0 · · · 0 K

2 −1


. (II.2.10)

The properties of Toeplitz matrices are discussed in Sec. A.2. The eigenvalues of the
interaction matrix for free boundary conditions read:

λn = −1 + K cos Θn, Θn = π n
N+1 , n ∈ {1, ..., N} , (II.2.11)

|K| ≤ 1.

Here, the second condition results from the requirement that the interaction matrix
has to be negative definite. One should note the similarity to the eigenvalues of the
periodic system, see Eq. (II.2.4). In contrast to the periodic system, free boundary
conditions allow for the choice K = ±1: if K = ±1 all eigenvalues stay negative for
any finite system size N. In the thermodynamic limit N → ∞, the largest eigenvalue
converges to zero, which leads to a logarithmic divergence of the free energy, see
Sec. II.2.1.4.

Estimating the free energy

We can estimate the free energy in two different ways: Either we use the deter-
minant, calculated in Sec. A.2, or we apply the trapezoidal rule to the eigenvalues
Eq. (II.2.11). We keep the notation from Sec. A.2 in mind,

τ± =
−1±

√
1− K2

2
, (II.2.12)
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

and start with the determinant:

βFf =
1
2 log |det M| = 1

2 log

(∣∣∣τN
−

∣∣∣ 1−
( τ+

τ−

)N+1

1− τ+
τ−

)

= 1
2

{
N log |τ−| − log

(
1− τ+

τ−

)
+ log

[
1−

(
τ+
τ−

)N+1
]}

= N
2 log 1+

√
1−K2

2 − 1
2 log

(
1− −1+

√
1−K2

−1−
√

1−K2

)
+O

(
e−

τ+
τ−

N
)

. (II.2.13)

Alternatively, using the eigenvalues we obtain

βFf =
1
2

N

∑
n=1

log |λi| = 1
2

N

∑
n=1

log
(
1− K cos π n

N+1

)
. (II.2.14)

Applying the trapezoidal rule yields

N

∑
n=1

log
(
1− K cos π n

N+1

)
=N+1

π

∫ π

0
dϕ log (1− K cos ϕ)

− 1
2 log

(
1− K2)+ R(N, K). (II.2.15)

Evaluating the integral,

1
π

∫ π

0
dϕ log (1− K cos ϕ) = log 1+

√
1−K2

2 , (II.2.16)

we confirm, that both methods yield the same result. Summarising:

βFf =
N
2 log 1+

√
1−K2

2 + 1
2 log 1+

√
1−K2

2
√

1−K2 + R(N, K)

= βFp +
1
2 log 1+

√
1−K2

2
√

1−K2 + R(N, K). (II.2.17)

In addition to the volume contribution

N
2 log 1+

√
1−K2

2 , (II.2.18)

which also appears in the free energy of the periodic system, the Gaussian chain
with free boundary conditions features the constant contribution

1
2 log 1+

√
1−K2

2
√

1−K2 , (II.2.19)

which we interpret as the boundary contribution, in accordance to the geometric
decomposition Eq. (I.0.4).
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II.2.1. One dimension

Exponential decay of the remaining term

According to the geometric decomposition Eq. (I.0.4), we expect all additional terms
in the free energy, which go beyond the geometric contributions, to decay exponen-
tially with the size N of the system. Using Eq. (A.33), we recognise

|det M f | =
(1+
√

1−K2)
N+1

2
√

1−K2

[
1−

(
1−
√

1−K2

1+
√

1−K2

)N+1
]

, (II.2.20)

βFf =
N
2 log 1+

√
1−K2

2 + 1
2 log 1+

√
1−K2

2
√

1−K2 − log
[

1−
(

1−
√

1−K2

1+
√

1−K2

)N+1
]

. (II.2.21)

Thus, the remaining term R decays exponentially with N/λ, where λ is the correla-
tion length of the system:

R(N, K) = log
[

1−
(

1−
√

1−K2

1+
√

1−K2

)N+1
]
= O

(
e−(N+1)/λ(K)

)
, for N → ∞ (II.2.22)

λ(K) =
[
log
(

1 +
√

1− K2
)
− log

(
1−

√
1− K2

)]−1
. (II.2.23)

The correlation length is symmetric under the transformation K 7→ −K. In Fig. II.2.2,
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Figure II.2.2.: Correlation length λ as a function of the coupling K, see Eq. (II.2.23).
As can be expected from the partition sum, the correlation length at
vanishing coupling vanishes, λ(0) = 0 and limK→±1 λ(K) = ∞.

the correlation length is plotted against the coupling strength K.
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

II.2.1.3. Virial expansion

In this section we carry out a virial expansion of the system, i.e. an expansion of
the free energy in the parameter K which corresponds to the interaction strength
between two neighbouring spins. Starting from given boundary conditions and the
corresponding interaction matrix M, we write the partition sum as usual:

Z =
1√
|detM|

. (II.2.24)

We rewrite the determinant:

det M = det (diag(−1) + δM) = [det diag(−1)] [det (1N − K A)] , (II.2.25)

where the matrix A can be obtained from the interaction matrix M and does not
depend on K:

A :=
M− diag(−1)

K
. (II.2.26)

The second determinant can be expressed as

det (1N − K A) = exp

{
−

∞

∑
j=1

K j

j
tr
(

Aj
)}

. (II.2.27)

Thus, we immediately obtain a power series expansion of the free energy F:

βF = − log Z = −1
2

∞

∑
j=1

K j

j
tr
(

Aj
)

. (II.2.28)

Now, the only remaining task is to calculate the trace of Aj. We consider both peri-
odic and free boundary conditions.

Periodic boundary conditions

For periodic boundary conditions we denote the matrix A as Ap and it has the fol-
lowing form:

Ap :=
Mp − diag(−1)

K
=



0 1
2 0 · · · 0 0 1

2
1
2 0 1

2 · · · 0 0 0

...
. . .

...

0 0 0 · · · 1
2 0 1

2
1
2 0 0 · · · 0 1

2 0


. (II.2.29)
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II.2.1. One dimension

The trace of Aj
p can be calculated directly from its eigenvalues an. We obtain the

eigenvalues using the same methods as in Sec. A.2, since An is a circulant.

an = cos
(

2π
n
N

)
, n = 1, ..., N. (II.2.30)

We denote the corresponding free energy as Fp. Terminating the series expansion
after the contribution Kn, we obtain:

βFp = −1
2

n

∑
j=1

K j

j

N

∑
k=1

cosj
(

2π
k
N

)
+O

(
Kn+1

)
. (II.2.31)

Our goal is to study the expansion coefficients Wp of the power series expansion:

Wp(j, N) :=
N

∑
k=1

cosj
(

2π
k
N

)
. (II.2.32)

In the next step we show that these coefficients consist of a term linear in the system
size N and otherwise only have a contribution which vanishes for systems larger
than a certain finite system size (which, of course, depends on j). We reformulate
this claim:

Proposition: Let j ∈N. We write

Wp(j, N) = N w0(j) + r(j, N). (II.2.33)

The contribution r obeys: r(j, N) = 0 ∀N > j.

Proof: We start with the expansion coefficients which correspond to odd powers
of K. In order to evaluate the sums, we use the Fourier decomposition of cosj, see
Sec. A.1:

Wp(2j− 1, N) =
1

22j−2

j−1

∑
i=0

(
2j− 1

i

) N

∑
k=1

cos
[
(2j− 1− 2i)2π

k
N

]

=
1

22j−2

j

∑
i=1

(
2j− 1
j− i

) N

∑
k=1

cos
[
(2i− 1)2π

k
N

]
. (II.2.34)

Using the addition theorems from Sec. A.1, we obtain

N

∑
k=1

cos
[
(2i− 1)2π

k
N

]
= cos

(
N + 1

N
π(2i− 1)

)
sin (π (2i− 1))

sin
(

π(2i−1)
N

) (II.2.35)

=

{
N, if 2i− 1 mod N = 0,
0, else.
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

From the summation over i we know, that 1 ≤ i ≤ j and thus 1 ≤ 2i− 1 ≤ 2j− 1.
Consequently,

(N > 2j− 1) ⇒ Wp(2j− 1, N) = 0. (II.2.36)

So far, we have proven the proposition for odd j. Now we look at even powers of K:

Wp(2j, N) =
N
22j

(
2j
j

)
+ 2

j−1

∑
i=0

(
2j
i

) N

∑
k=1

cos
[

2(j− i)2π
k
N

]
. (II.2.37)

Applying the addition theorem again:

N

∑
k=1

cos
[

2(j− i)2π
k
N

]
= cos

(
N + 1

N
2π(j− i)

)
sin (2π (j− i))

sin
(

2π
j−i
N

) (II.2.38)

=

{
N, if 2(j− i) mod N = 0,
0, else.

Thus, we have shown

N > 2j ⇒ Wp(2j, N)− N
22j

(
2j
j

)
= 0. (II.2.39)

We have proven the proposition. The coefficient w0(j) reads

w0(j) =

{
1
2j (

j
j/2), even j,

0, else.
(II.2.40)

We summarise the virial expansion of the periodic system:

βFp = −1
4

n

∑
j=1

K2j

j
N w0(2j) + rn(N) +O

(
K2n+1

)
,

rn(N) = 0, ∀N > 2n. (II.2.41)

One should note that the power series converges, as expected, to the volume coeffi-
cient of the one-dimensional Gaussian chain, see Eq. (II.2.8):

−1
4

∞

∑
j=1

K2j

j
w0(2j) =

1
4π

∫ 2π

0
dϕ log (1− K cos ϕ) . (II.2.42)

Free boundary conditions

The eigenvalues an of the matrix Af of the virial expansion for free boundary condi-
tions read

an = cos
(

π
n

N + 1

)
, n = 1, ..., N. (II.2.43)
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II.2.1. One dimension

Carrying out the power series expansion of βFf:

βFf = −
1
2

n

∑
j=1

K j

j

N

∑
k=1

cosj
(

π
k

N + 1

)
+O

(
Kn+1

)
, (II.2.44)

we define the expansion coefficients Wf:

Wf(j, N) :=
N

∑
k=1

cosj
(

π
k

N + 1

)
. (II.2.45)

Our next step is similar to the case of periodic boundary conditions: We prove that
Wf, for a fixed first argument, is a sum of a contribution linear in N and a constant
term, all other contributions vanishing for large enough system size.

Proposition: Let j ∈N. We write

Wf(j, N) = N w0(j) + w1(j) + r(j, N). (II.2.46)

The contribution r obeys r(j, N) = 0 ∀N > j.

Proof: We start with odd powers:

cos2j−1
(

π
k

N + 1

)
=

1
22j−2

j

∑
i=1

(
2j− 1
j− i

)
cos

[
(2i− 1)π

k
N + 1

]
. (II.2.47)

Applying the addition theorem yields

N

∑
k=1

cos
[
(2i− 1)π

k
N + 1

]
= cos

(
2i− 1

2
π

) sin
( 2i−1

2
N

N+1 π
)

sin
(

2i−1
2(N+1)π

) (II.2.48)

=

{
N, if 2i−1

2 mod (N + 1) = 0,
0, else.

We know that 2j− 1 > 2i− 1 and thus:

N > 2j− 1 ⇒ N > 2i− 1 ⇒ N >
2i− 1

2

⇒ 2i− 1
2

mod (N + 1) 6= 0 ⇒ Wf(2j− 1, N) = 0. (II.2.49)

Now let us address even powers of K:

N

∑
k=1

cos2j
(

k
π

N + 1

)
=

N
22j

(
2j
j

)
+ 2

N

∑
k=1

j

∑
i=1

(
2j

j− i

)
cos

(
2πi

k
N + 1

)
. (II.2.50)
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

We evaluate the k-sum, assuming N > j:

N

∑
k=1

cos
(

2πi
k

N + 1

)
= cos(πi)

sin
(
π N

N+1 i
)

sin πi
N+1

. (II.2.51)

The addition theorem for sin(x + y) gives us

sin
(
π N

N+1 i
)

sin πi
N+1

=
sin πi

(
1− 1

N+1

)
sin πi

N+1

=
sin πi cos πi

N+1 − sin πi
N+1 cos πi

sin πi
N+1

= − cos πi, (II.2.52)

and

2
N

∑
k=1

j

∑
i=1

(
2j

j− i

)
cos

(
2πi

k
N + 1

)
= −2

j

∑
i=1

(
2j

j− i

)
cos2 πi = −2

j

∑
i=1

(
2j

j− i

)
.

(II.2.53)

We define the coefficient w1 as follows:

w1(2j) :=
j

∑
i=1

(
2j

j− i

)
. (II.2.54)

Thus, we have carried out the virial expansion of the one-dimensional Gaussian
system with free boundary conditions:

βFf = −
1
4

n

∑
j=1

K2j

j
[N w0(2j)− 2 w1(2j)] + rn(N) +O

(
K2n+1

)
, (II.2.55)

rn(N) = 0, ∀N > 2n.

Again, the summation over w1 converges to the surface contribution of the free en-
ergy with free boundary conditions, see Eq. (II.2.17).

Conluding, we can say that the virial expansion of the next-neighbour Gaussian
model in one dimension obeys a geometric decomposition similar to Eq. (I.0.4) with
the remaining term vanishing at a finite system size.

II.2.1.4. Summary and results

In this section we summarise the results of the one-dimensional Gaussian model
and discuss the asymptotic behaviour of the canonical partition sum in the limit of
critical coupling.
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II.2.1. One dimension

Free energy and its geometric decomposition

For general boundary conditions the partition sum is defined for coupling parame-
ters |K| < 1. The free energy F of the system reads

βF = f 1d
0 |D|+ f 1d

1 |∂D|+ R(N, K), (II.2.56)

where |D| = N is the number of spins in the system and is interpreted as the vol-
ume of the system, according to Sec. I.1. The quantity |∂D| is the surface area of
the system. The surface area of n separated Gaussian chains with free boundary
conditions equals n, while the surface area of a Gaussian chain with periodic bound-
aries vanishes. R is the remaining term which vanishes faster than any power of
N as N grows to infinity. The coefficients f 1d

0 , f 1d
1 correspond to the decomposition

Eq. (I.0.4) and read

f 1d
0 =

1
2

log
1 +
√

1− K2

2
, (II.2.57)

f 1d
1 =

1
2

log
1 +
√

1− K2

2
√

1− K2
. (II.2.58)

Both coefficients are depicted on the left-hand side of Fig. II.2.3
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Figure II.2.3.: Left: the volume coefficient f 1d
0 and the surface coefficient f 1d

1 as func-
tions of the spin-spin coupling K. Both coefficients are symmetric
around K = 0. Right: correlation length λ as a function of the coupling
K. In Eq. (II.2.23) one can see that λ(0) = 0 and limK→±1 λ(K) = ∞.

Critical coupling

This section addresses the behaviour of the thermodynamic coefficients f 1d
0 , f 1d

1 and
the convergence of the partition sum in the limit of critical coupling strength. The
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

volume coefficient f 1d
0 is bounded and has the following properties:∣∣∣ f 1d

0 (K)
∣∣∣ < ∞, ∀ K ∈ [−1, 1], (II.2.59)

lim
K→±1

∣∣∣∣ d
dK

f 1d
0 (K)

∣∣∣∣ = ∞. (II.2.60)

The surface coefficient reflects the fact that the partition sum diverges for |K| = 1
and N → ∞:

lim
K→±1

∣∣∣ f 1d
1 (K)

∣∣∣ = ∞. (II.2.61)

One should point out that the thermodynamic limit N → ∞ and the limit of critical
coupling K → ±1 can not be interchanged freely: In the case of periodic bound-
ary conditions the partition sum is only defined for |K| < 1. Then the following
statement holds for the free energy:

βF = N f 1d
0 + R(N, K), (II.2.62)

R(N, K) = O
(

N−k
)

, ∀ k ∈N, for N → ∞. (II.2.63)

Interchanging the limits leads to∣∣∣∣ lim
K→±1

lim
N→∞

1
N

βF
∣∣∣∣ = ∣∣∣∣ lim

K→±1
f 1d
0

∣∣∣∣ < ∞, (II.2.64)∣∣∣∣ lim
K→±1

1
N

βF
∣∣∣∣ = ∞, ∀ N ∈N. (II.2.65)

On the other hand in the case of free boundary conditions the partition sum is de-
fined for all couplings K ∈ [−1, 1], in particular for K ∈ {±1}. However, for the
critical coupling K = ±1, the free energy features additional terms as N → ∞:

βF =

{
N f 1d

0 + f 1d
1 +O

(
e−(N+1)/λ(K)

)
, if |K| < 1,

N f 1d
0 + log(N + 1) +O (1) , if |K| = 1.

(II.2.66)

This results from the evaluation of the Euler-Maclaurin formula for integrands with
singularities, see [23], [11] for details. The correlation length λ is derived and dis-
cussed in Sec. II.2.1.2 and illustrated on the right-hand side of Fig. II.2.3.

II.2.2. Two dimensions

In this section we discuss the partition sum of the two-dimensional Gaussian model
for toroidal, cylindric, Moebius strip and free boundary conditions. The calculation
of the eigenvalues, the eigenvectors and the inverse of the interaction matrices is
performed in Sec. A.2. We start by considering a rectangular lattice consisting of M×
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II.2.2. Two dimensions

MN−1

MN

(M−1)N+1

2N

N+2

N+11

3

2

N−1

N

M

N

Figure II.2.4.: A two-dimensional Gaussian lattice consisting of M × N sites. Each
site is symbolised with a circular dot and corresponds to a spin. Every
two neighbouring spins which are connected by black lines interact
with each other. The numeration of the spins is chosen such that the
first column corresponds to the spins 1, ..., N, the second column cor-
responds to the spins N + 1, ..., 2N etc.

N sites. A spin is attached to each lattice site, two neighbouring spins interacting
with each other, see Fig. II.2.4 The shape of the interaction matrix of the system
depends on the numeration of the spins. Unless mentioned otherwise, we choose
the numeration which is illustrated in Fig. II.2.4. After that, the interaction matrix is
fully determined by the choice of boundary conditions.

II.2.2.1. Toroidal boundaries

We start with toroidal boundary conditions: The spins of the M-th column and N-
th row interact with the spins of the first column and the first row respectively. To
simplify the notation of the Hamiltonian, we denote the spin in the m-th row and
n-th column as sm,n. Thus, the Hamiltonian reads:

−βH = −∑
n,m

s2
m,n + K

M

∑
m=1

N

∑
n=1

sm,nsm,n+1 + K
M

∑
m=1

N

∑
n=1

sm,nsm+1,n , (II.2.67)
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

where sm,N+1 ≡ sm,1, sM+1,n ≡ s1,n, mirroring the boundary conditions. The sys-
tem is fully translational invariant and, from the geometric point of view, does not
possess a boundary.

Interaction matrix, eigenvalues

We denote the interaction matrix as M2d
t . The system size dictates that M2d

t ∈
Mat (NM× NM, R) and

M2d
t =



Mp
K
2 1N 0 · · · 0 0 K

2 1N
K
2 1N Mp

K
2 1N · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 1N Mp

K
2 1N

K
2 1N 0 0 · · · 0 K

2 1N Mp


. (II.2.68)

Here, Mp ∈ Mat (N × N, R) is the interaction matrix of the one-dimensional Gaus-
sian model with periodic boundary conditions. The eigenvalues αt

nm of the interac-
tion matrix M2d

t are:

αt
nm = −1 + K cos ϕn + K cos ϕm = −1 + K cos 2π

n
N

+ K cos 2π
m
M

, (II.2.69)

2|K| < 1.

The condition 2|K| < 1 results from the requirement that all eigenvalues have to
be negative. One should point out the similarity with the eigenvalues of the one-
dimensional system, see Eq. (II.2.4).

Free energy

In this section, we calculate the free energy of the two-dimensional Gaussian lattice
with toroidal boundary conditions. We start with the eigenvalues:

βF2d
t = 1

2 log
∣∣∣det M2d

t

∣∣∣ = 1
2

N,M

∑
n,m=1

log |αnm|. (II.2.70)

Similar to d = 1, we use the trapezoidal rule:

βF2d
t = NM

2π2

∫ π

0
dϕ

∫ π

0
dθ log (1− K cos ϕ− K cos θ) + R(N, M, K). (II.2.71)

We evaluate one of the integrals

βF2d
t = NM

2π

∫ π

0
dϕ log 1+K cos ϕ+

√
(1+K cos ϕ)2−K2

2 + R(N, M, K). (II.2.72)
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II.2.2. Two dimensions

One should note that, since the system has no boundary and no surface (due to
the toroidal boundary conditions), we expect this expression to be the volume con-
tribution to free energy, in correspondence to the decomposition Eq. (I.0.4). The
remaining term R vanishes faster than any power of N, M, according to the Euler-
Maclaurin formula for periodic functions, see Sec. A.4:

R(N, M, K) = O
(

N−k
)

, ∀M ∈N, K ∈
(
− 1

2 , 1
2

)
, as N → ∞, (II.2.73)

R(N, M, K) = O
(

M−k
)

, ∀N ∈N, K ∈
(
− 1

2 , 1
2

)
, as M→ ∞. (II.2.74)

II.2.2.2. Cylindric boundaries

To estimate the boundary contribution to the free energy, i.e. the surface tension of
the system, we consider a two-dimensional Gaussian strip with cylindric boundary
conditions: The first row interacts with the N-th row, but, in contrast to toroidal
boundaries, the first column and the M-th column are subject to free boundary con-
ditions and do not interact with each other. In this way, the system has a boundary
with the length 2N. To write down the Hamiltonian, we denote the spin in the m-th
row and n-th column with sm,n:

−βH = −∑
n,m

s2
m,n + K

M

∑
m=1

N

∑
n=1

sm,nsm,n+1 + K
M−1

∑
m=1

N

∑
n=1

sm,nsm+1,n, (II.2.75)

here, sm,N+1 ≡ sm,1 mirrors the cylindric boundaries.

Interaction matrix

To write down the interaction matrix in a more convenient way, we numerate the
spins consequently, as in Fig. II.2.4. The interaction matrix M2d

c reads.

M2d
c =



Mp
K
2 1N 0 · · · 0 0 0

K
2 1N Mp

K
2 1N · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 1N Mp

K
2 1N

0 0 0 · · · 0 K
2 1N Mp


. (II.2.76)

Again, Mp ∈ Mat
(
RN ×RN) is the interaction matrix of the one-dimensional peri-

odic system. We obtain the eigenvalues of the interaction matrix from Sec. A.2.

αc
nm = −1 + K cos ϕn + K cos θm = −1 + K cos 2π n

N + K cos π m
M+1 , (II.2.77)

2|K| ≤ 1.
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

The index c refers to cylindric boundary conditions and will be omitted whenever it
is obvious which type of boundary conditions is under consideration. One should
point out the similarity to the eigenvalues of the toroidal system, see Eq. (II.2.69), as
well as the one-dimensional systems, see Eq. (II.2.4) and Eq. (II.2.11).

Free energy

The free energy βF2d
c of the system reads

βF2d
c = 1

2 log
∣∣∣det M2d

c

∣∣∣ = 1
2

N,M

∑
n,m=1

log |αc
nm|. (II.2.78)

Applying the trapezoidal rule transforms the sum over n into an integral (up to ex-
ponentially decaying contributions). However, the sum over m additionally features
a constant contribution:

N,M

∑
n,m=1

log |αc
nm| =

N,M

∑
n,m=1

log
(
1− K cos 2π n

N − K cos π m
M+1

)
=N

π

∫ π

0
dϕ

{
M+1

π

∫ π

0
dθ log (1− K cos ϕ− K cos θ)

− 1
2 log

[
(1− K cos ϕ)2 − K2] }+ R(N, M, K)

=NM
π2

∫ π

0
dϕ

∫ π

0
dθ log (1− K cos ϕ− K cos θ)

+ N
π2

∫ π

0
dϕ

∫ π

0
dθ log 1−K cos ϕ−K cos θ√

(1−K cos ϕ)2−K2
+ R(N, M, K). (II.2.79)

Finally, we obtain the free energy:

βF2d
c = NM

2π2

∫ π

0
dϕ

∫ π

0
dθ log (1− K cos ϕ− K cos θ)

+ N
2π2

∫ π

0
dϕ

∫ π

0
dθ log 1−K cos ϕ−K cos θ√

(1−K cos ϕ)2−K2
+ R(N, M, K). (II.2.80)

We rewrite this result and compare it to the free energy F2d
t of the toroidal system,

see Eq. (II.2.72):

βF2d
c = βF2d

t + N
2π2

∫ π

0
dϕ

∫ π

0
dθ log 1+K cos ϕ+K cos θ√

(1+K cos ϕ)2−K2
+ R(N, M, K). (II.2.81)

The remaining term R decays faster than any power of N, M. As expected, this
expression features a contribution proportional to the length 2N of the free boundary
of the system. We interpret it as the surface contribution according to Eq. (I.0.4).
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II.2.2. Two dimensions
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Figure II.2.5.: A two-dimensional Gaussian system, consisting of M = 6 columns,
N = 7 spins each. In contrast to the cylindric boundary conditions,
with Moebius boundary conditions the last column interacts with the
first column “in reversed order”.

II.2.2.3. Moebius strip

To determine the influence of topology on the partition sum, we consider a Gaus-
sian system with Moebius strip boundary conditions, see Fig. II.2.5. We denote the
interaction matrix as M2d

m :

M2d
m =



Mf
K
2 1N 0 · · · 0 0 K

2 JN
K
2 1N Mf

K
2 1N · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 1N Mf

K
2 1N

K
2 JN 0 0 · · · 0 K

2 1N Mf


. (II.2.82)

Here, the matrix JN connects the first and the last column and reads:

(JN)i,j = δi+j,N+1. (II.2.83)

As discussed in Sec. A.2, the eigenvalues with odd indices λ2j−1,k read

λ2j−1,k = −1 + K cos
(

π
2j−1
N+1

)
+ K cos

(
2π k

M

)
, (II.2.84)
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

while the eigenvalues with even indices λ2j,k read

λ2j,k = −1 + K cos
(

π
2j

N+1

)
+ K cos

(
π 2k−1

M

)
. (II.2.85)

The introduction of “twisted” boundary conditions shifts half of the spectrum. Nev-
ertheless, the partition sum and the free energy in the thermodynamic limit remain
unchanged up to exponentially decaying contributions, which is a direct result of
the Euler-Maclaurin formula.

log det M2d
m = log det M2d

c . (II.2.86)

II.2.2.4. Free boundary conditions

After having estimated the volume contribution to the free energy in Sec. II.2.2.1 and
the surface contribution in Sec. II.2.2.2, we determine the corner contribution in this
section. In order to do this, we introduce and discuss a Gaussian strip with free
boundary conditions. We calculate the eigenvalues and write down the inverse and
the eigenvectors of the interaction matrix in Sec. A.2. The Hamiltonian reads

−βH = −∑
n,m

s2
m,n + K

M

∑
m=1

N−1

∑
n=1

sm,nsm,n+1 + K
M−1

∑
m=1

N

∑
n=1

sm,nsm+1,n. (II.2.87)

Interaction matrix

The interaction matrix M2d
f results from removing all entries, which correspond to

periodic interactions from the interaction matrix of cylindric boundaries M2d
c :

M2d
f =



Mf
K
2 1N 0 · · · 0 0 0

K
2 1N Mf

K
2 1N · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 1N Mf

K
2 1N

0 0 0 · · · 0 K
2 1N Mf


. (II.2.88)

Instead of the circulant matrix Mp on the main block diagonal, we use the matrix Mf
of the one-dimensional system with free boundary conditions. The calculations of
the eigenvalues αf

nm in Sec. A.1 yield:

αf
nm = −1 + K cos θn + K cos θm = −1 + K cos π n

N+1 + K cos π m
M+1 , (II.2.89)

2|K| ≤ 1.

Again, one should note the similarity to the toroidal and the cylindric eigenvalues,
see Eq. (II.2.69), Eq. (II.2.69).
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II.2.2. Two dimensions

Free energy

The calculation of the free energy occurs in the same way as for other boundary
conditions:

βF2d
c = 1

2 log
∣∣∣det M2d

f

∣∣∣ = 1
2

N,M

∑
n,m=1

log |αf
nm|. (II.2.90)

Applying the trapezoidal rule yields

N,M

∑
n,m=1

log |αf
nm| =

M

∑
m=1

[
N+1

π

∫ π

0
dϕ log

(
1− K cos ϕ− K cos π m

M+1

)
− log

√(
1− K cos π m

M+1

)2 − K2 + R(N, K)
]

=N+1
π

∫ π

0
dϕ

[
M+1

π

∫ π

0
dθ log (1− K cos ϕ− K cos θ)

− log
√
(1− K cos ϕ)2 − K2

]
− M+1

π

∫ π

0
dθ log

√
1− K cos θ)2 − K2

+ 1
2

[
log
√
(1− K)2 − K2 + log

√
(1 + K)2 − K2

]
+ R(N, M, K).

(II.2.91)

And finally,

βF2d
f =βF2d

t + N+M
2π2

∫ π

0
dϕ

∫ π

0
dθ log 1+K cos ϕ+K cos θ√

(1+K cos ϕ)2−K2

+ 1
2π2

∫ π

0
dϕ

∫ π

0
dθ log (1+K cos ϕ+K cos θ)(1−4K2)

1
4

(1+K cos ϕ)2−K2 + R(N, M, K).

βF2d
t is the free energy of the M× N Gaussian strip with toroidal boundaries. One

should note that compared with the cylindric system, this expression features an
additional boundary term, proportional to the length 2M of the new free boundary.
Furthermore we observe a constant contribution independent of the system size,

1
2π2

∫ π

0
dϕ

∫ π

0
dθ log (1+K cos ϕ+K cos θ)(1−4K2)

1
4

(1+K cos ϕ)2−K2 , (II.2.92)

which we interpret as the corner contribution, in accordance to Eq. (I.0.4).

II.2.2.5. Summary and results

In this section we summarise the results of the calculations of the partition sum
of a convex, i.e. rectangular, Gaussian domain in two dimensions. For toroidal
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

boundary conditions the partition sum is defined for couplings |K| < 1/2. For
cylindric and free boundary conditions the partition sum is additionally defined for
K ∈ {−0.5, 0.5} for all finite system sizes. The asymptotic form of the free energy in
the thermodynamic limit reads

βF = f 2d
0 |D|+ f 2d

1 |∂D|+ f 2d
2 K(D) + R(N, M, K), |K| < 1

2
. (II.2.93)

According to Sec. I.1, |D| is the number of spins in the system which corresponds
to the volume of the system. |∂D| is the surface area of the system and K(D) is the
corner contribution and equals one. The surface area of a M× N Gaussian stripe is
defined as:

• zero, for toroidal boundary conditions,

• 2M for cylindric boundary conditions (where M is the length of each of the
two free boundaries),

• 2(M + N) for free boundary conditions.

The remaining term R vanishes faster than any power of N, M as N, M → ∞. The
coefficients f 2d

i read

f 2d
0 =

1
2π

∫ π

0
dϕ log

1 + K cos ϕ +
√
(1 + K cos ϕ)2 − K2

2
, (II.2.94)

f 2d
1 =

1
2

f 2d
0 −

1
8

log

(
1− K +

√
1− 2K

) (
1 + K +

√
1 + 2K

)
4

,

f 2d
2 = f 2d

0 −
1
2

log

(
1− K +

√
1− 2K

) (
1 + K +

√
1 + 2K

)
4

+
1
8

log
(
1− 4K2) .

These coefficients have the following properties: Both f 2d
0/1 are bounded but not their

derivatives: ∣∣∣ f 2d
0/1(K)

∣∣∣ < ∞ ∀ K ∈ [−0.5, 0.5], (II.2.95)

lim
K→±0.5

∣∣∣∣ d
dK

f 2d
0/1(K)

∣∣∣∣ = ∞. (II.2.96)

The divergence of the free energy is reflected in the corner coefficient f 2d
2 :

lim
K→±0.5

∣∣∣ f 2d
2 (K)

∣∣∣ = ∞. (II.2.97)

All three coefficients are depicted in Fig. II.2.6
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II.2.2. Two dimensions
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Figure II.2.6.: Volume coefficient f 2d
0 , surface coefficient f 2d

1 and corner coefficient
f 2d
2 as functions of the coupling K. All coefficients are symmetric

around K = 0.

Asymptotic behaviour at critical coupling

The behaviour of the free energy under interchanging of the thermodynamic limit
and the limit of critical coupling is similar to the one-dimensional case. Let n1, n2 ∈
N. For a n1N × n2N, Gaussian stripe with toroidal boundaries (defined only for
|K| < 0.5) one obtains

βF = n1n2N2 f 2d
0 + R(N, K), (II.2.98)

R(N, K) = O
(

N−k
)

, ∀ k ∈N, for N → ∞. (II.2.99)

The following relations holds:

lim
K→±0.5

∣∣∣∣ lim
N→∞

1
N2 βF

∣∣∣∣ = ∣∣∣∣n1n2 lim
K→±0.5

f 2d
0

∣∣∣∣ < ∞, (II.2.100)

lim
K→±0.5

∣∣∣∣ 1
N2 βF

∣∣∣∣ = ∞, ∀N ∈N. (II.2.101)

In the case of cylindric and free boundary conditions the partition sum is addi-
tionally defined for |K| = 0.5. Again, we have to consider two different cases: Let
n1, n2 ∈ N. We consider the free energy of a n1N × n2N Gaussian stripe with free
edges of the length n1N and periodically connected edges of the length n2N. Alter-
natively, we consider a Gaussian stripe where all edges are subject to free boundary
conditions:

βF = n1n2N2 f 2d
0 + 2n1N f 2d

1 + R(N, K), cylindric b.c. (II.2.102)

βF = n1n2N2 f 2d
0 + 2N (n1 + n2) f 2d

1 + f 2d
2 + R(N, K), free b.c. (II.2.103)
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

The asymptotic behaviour of the remaining term R as a function of system size N
depends on the coupling strength:

R(N, K) =

{
O
(

N−k) , ∀ k ∈N, for N → ∞, if |K| < 0.5
O (log N) , for N → ∞, if |K| = 0.5.

(II.2.104)

II.2.3. Three and higher dimensions

In this section we briefly outline the solution of the Gaussian model in general di-
mensions. As already seen in the case d = 2 the key to the solution lies in studying
the interaction matrices of the one-dimensional system. We start by discussing the
three-dimensional system with different boundary conditions to illustrate the gen-
eral case. Finally, we present the eigenvalues of the d-dimensional system with free
boundary conditions. This allows us to calculate all contributions to the free energy
up to contributions which decay faster than any power of the system size in the
thermodynamic limit.

II.2.3.1. Interaction matrix, eigenvectors, eigenvalues

We consider a N1 × N2 × N3 Gaussian cuboid. For each two opposite of its six faces,
we can either choose free or periodic boundary conditions. Thus, we are looking at
four possible types of boundary conditions (not counting permutations):

• periodic, i.e. each two opposite faces are interacting with each other,

• free at the “left” and the “right” faces and periodic else,

• free at the “left”, “right”, “upper”, “lower” faces and periodically closed at the
remaining two faces and

• the fully free boundary conditions.

Depending on the boundary conditions, the interaction matrix has the following
form:

M3d =



M2d
i

K
2 1N1 N2 0 · · · 0 0 δM

K
2 1N1 N2 M2d

i
K
2 1N1 N2 · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 1N1 N2 M2d

i
K
2 1N1 N2

δM 0 0 · · · 0 K
2 1N1 N2 M2d

i


. (II.2.105)

Where δM, M2d
i ∈ Mat (N1N2 × N1N2, R) and

δM =

{
diag

(K
2 , ..., K

2

)
, for fully periodic boundaries,

0 , else.
(II.2.106)
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II.2.3. Three and higher dimensions

The main-diagonal matrix M2d
i describes the interactions within a two-dimensional

layer of spins and depends on the boundary conditions within the layer:

M2d
i =


M2d

t , if fully periodic,
M2d

t , if free at two faces,
M2d

c , if free at four faces,
M2d

f , if fully free.

(II.2.107)

In the next step we calculate the eigenvalues of the interaction matrix. For the
N1N2N3 eigenvectors, which we denote with Ψlmn, we make the same ansatz as in
d = 2, see Sec. A.2

Ψlmn =
(

z(n)1 Ψlm, z(n)2 Ψlm, ..., z(n)N3
Ψlm

)
, (II.2.108)

where
(

z(n)1 , ..., z(n)N3

)
is the N3-tuple of complex numbers which has to be determined

and Ψlm is the lm-th eigenvector of M2d
i . We denote the lm-th eigenvalue of M2d

i with
αi

lm and the lmn-th eigenvalue of M3d
i with λi

lmn. Explicitly evaluating the eigenvalue
equation (in analogy to the two-dimensional case) yields the eigenvalues λ:

λi
lmn = αi

lm + K cos βn, (II.2.109)

where βn = 2π n
N , n = 1, ..., N3 if we have fully periodic boundaries and βn =

π n
N3+1 else. Thus, depending on the boundary conditions, we obtain four sets of

eigenvalues of M3d:

λ
p
lmn = −1 + K cos ϕl + K cos ϕm + K cos ϕn, fully periodic BC, (II.2.110)

λ1f
lmn = −1 + K cos ϕl + K cos ϕm + K cos θn, two free faces, (II.2.111)

λ2f
lmn = −1 + K cos ϕl + K cos θm + K cos θn, four free faces, (II.2.112)

λf
lmn = −1 + K cos θl + K cos θm + K cos θn, fully free BC. (II.2.113)

Here we use the convention for the angles ϕi, θj, as introduced in Sec. II.2.1:

ϕn = 2π
n
Ni

, n = 1, ..., Ni,

θm = π
m

Nj + 1
, m = 1, ..., Nj, (II.2.114)

Ni, Nj being the corresponding side lengths of the cuboid container.

II.2.3.2. Free energy

In the next step we calculate the free energy F of the system

βF = 1
2 ∑ log |λlmn|. (II.2.115)
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

To evaluate the sum we use the Euler-Maclaurin summation formula which also tells
us that all remaining contributions vanish exponentially with the size of the system.
On the basis of the decomposition Eq. (I.0.4), we introduce the thermodynamic coef-
ficients fi

f 3d
0 := 1

2π3

∫
[0,π]3

d3ϕ log

(
1− K

3

∑
i=1

cos ϕi

)
,

f 3d
1 := 1

4π3

∫
[0,π]3

d3ϕ log 1−K ∑3
i=1 cos ϕi√

(1−K cos ϕ1−K cos ϕ2)
2−K2

,

f 3d
2 := 1

8π3

∫
[0,π]3

d3ϕ log (1−K ∑3
i=1 cos ϕi)[(1−K cos ϕ1)

4−4K2(1−K cos ϕ1)
2]

1
4

(1−K cos ϕ1−K cos ϕ2)
2−K2 ,

f 3d
3 := 1

2π3

∫
[0,π]3

d3ϕ log (1−K ∑3
i=1 cos ϕi)[(1−K cos ϕ1)

4−4K2(1−K cos ϕ1)
2]

3
4[

(1−K ∑2
i=1 cos ϕi)

2−K2
] 3

2 [(1+3K2)
2−16K2]

1
8 (1−K2)

1
4

. (II.2.116)

Furthermore, we denote the total number of spins, i.e. the volume, N1N2N3 with N.
Omitting all contributions which decay exponentially with the system size, we ob-
tain the following expressions for the free energy of the system at different boundary
conditions:

βF3d
p = N f 3d

0 , fully periodic BC,

βF3d
1f = N f 3d

0 + 2N1N2 f 3d
1 , one free pair of faces,

βF3d
2f = N f 3d

0 + 2 (N1N2 + N1N3) f 3d
1 + 4N1 f 3d

2 , two free pairs of faces,

βF3d
f = N f 3d

0 +
3

∑
i,j=1

NiNj f 3d
1 + 4

3

∑
i=1

Ni f 3d
2 + f 3d

3 , fully free BC. (II.2.117)

These results suggest to interpret the free energy with fully free boundary condi-
tions geometrically: We consider the term proportional to N1N2N3 as the volume
contribution, the terms proportional to Ni, Nj for i 6= j as surface contributions, the
term proportional to N1 + N2 + N3 as the contribution which corresponds to the in-
tegrated mean curvature and the size-independent term as the corner contribution.
As a result, we can say that the free energy of the three-dimensional Gaussian model
on convex domains is in full agreement with the decomposition Eq. (I.0.4) and the
geometric interpretation which goes hand-in-hand with it. The case of non-convex
domains has to be studied separately.

Critical coupling: Similar to one and two dimensions, see Sec. II.2.1.4, Sec. II.2.2.5,
one can analyse the behaviour of the coefficients f 3d

i of the three-dimensional system
in the limit of critical coupling |K| → 1/3. One should note that the coefficient
f 3d
i is a linear combination of previous coefficients f 3d

i−1, ..., f 3d
0 and one additional

contribution. Thus, it seems appropriate to start with f 3d
0 . In order to do this we

study the integrand of f 3d
0 , see Eq. (II.2.116). We only consider K = 1/d, as the case
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II.2.3. Three and higher dimensions

K = −1/d can be treated analogously. The integrand diverges for K = 1/d if the
angle variable (ϕ1, ϕ2, ϕ3) approaches (0, 0, 0). Carrying out a series expansion of
the integrand around (ϕ1, ϕ2, ϕ3) = (0, 0, 0), we obtain:

log

(
1 + K

3

∑
i=1

cos ϕi

)
= log

(
1− 3K +

1
2

3

∑
i=1

ϕ2
i +O

(
ϕ3

i
))

= log

(
3

∑
i

ϕ2
i +O

(
ϕ3

i
))
− log 2. (II.2.118)

The integration around the origin (0, 0, 0), e.g. over the ball Bε, in spherical coordi-
nates (R, θ, φ) results in an integral of the type

∫
Bε

d3ϕ log
3

∑
i=1

ϕ3
i =

8
3

π
∫ ε

0
dR R2 log R, (II.2.119)

and we see that the integral remains finite. The coefficient f 3d
1 additionally features

the integrand

log

(
1− K− K

2

∑
i=1

cos ϕi

)
, (II.2.120)

which is divergent for (ϕ1, ϕ2) → (0, 0) and K = 1/d. Carrying out a series expan-
sion of the integrand around the singularity and integrating over a small sphere Bε

centered at the singularity results in

∫
Bε

d2ϕ log

(
2

∑
i=1

ϕ2
i

)
= 4π

∫ ε

0
dR R log R. (II.2.121)

Again, this integral is finite. Similar to f 3d
0 and f 3d

1 , the coefficient f 3d
2 features a

divergent integrand and the integration over the singularity can be reduced to the
finite integral

∫ ε

0
dR log R. (II.2.122)

Therefore, the only divergent coefficient is f 3d
3 which can be written as

f 3d
3 = f 3d

0 − 3 f 3d
1 + 3 f 3d

2 −
1
8

log(1− K2). (II.2.123)

The only divergent contribution is log(1− K2).
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II.2. Basic solution for convex lattice domains in arbitrary dimensions

II.2.3.3. Higher dimensions

After having seen the derivation of the partition sum for d = 1, 2, 3, the general-
isation to higher dimensions is straight-forward. One can easily derive the parti-
tion sum of the fully periodical system (which corresponds to the bulk contribution)
for arbitrary dimension d using the theory of circulants. To calculate other geomet-
ric contributions, one can consider the system with free boundaries and derive the
eigenvalues λi1,...,id of the interaction matrix as

λi1,...,id = −1 + K
d

∑
j=1

cos
(

π
ij

Nj + 1

)
, (II.2.124)

where N1, ..., Nd characterise the size of the system and the index ij can be any inte-
ger between 1 and Nj. Using the eigenvalues and the Euler-Maclaurin summation
formula, one can estimate all contributions to the free energy, up to contributions
which decay exponentially with at least one of the side lengths Ni. Since these cal-
culations are lengthy and do not contribute to the understanding of the system, we
omit them and concentrate on studying the cases d = 1, 2 and 3. However, after
having studied the behaviour of the thermodynamic coefficients fi in the limit of
critical coupling in one, two and three dimensions, we formulate the following con-
jecture: In d dimensions, the thermodynamic coefficients f0, f1, ..., fd−1 of the free
energy of the Gaussian system remain finite at the critical coupling |K| = 1/d. The
coefficient fd of the contribution to the free energy which grows as (system size)0 in
the thermodynamic limit diverges logarithmically for K → ±1/d.
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II.3. Magnetic field

In this section we study the influence of a magnetic field on the partition sum of the
Gaussian model in one and two dimensions: Given a set of boundary conditions,
which are encoded in the interaction matrix M, we introduce the magnetic field h,
which enters the Hamiltonian H in the following way:

−βH = st Ms + hts, (II.3.1)

Z = π−
|D|
2

∫
d|D|s exp

(
st Ms + hts

)
. (II.3.2)

Again, the factor π−
|D|
2 is merely a convenient normalisation constant. To evaluate

the integral we perform the substitution x = Tts, which diagonalises the interaction
matrix M:

π−
|D|
2

|D|

∏
i=1

∫
dxi exp

(
x2

i λi + mixi
)

, (II.3.3)

where m := Tth is the transformed magnetic field. The Gaussian integral yields

Z =
1√
|det M|

exp
(
−1

4
ht M−1h

)
. (II.3.4)

Thus, by introducing a magnetic field h, the free energy of the system obtains an
additive contribution which is quadratic in h:

βF(D; β, h) = − log Z(D; β, h) = βF(D; β, 0) +
1
4

ht M−1h. (II.3.5)

The magnetic contribution is the standard scalar product of h with the transformed
field M−1h. In the rest of this section we study three different types of magnetic
fields h: Fields which are eigenvectors of M, constant fields and, in case of d = 2,
boundary fields. One should note that for the case of a constant magnetic field we
obtain:

ht = m (1, 1, ..., 1). (II.3.6)

The partition sum then reads

Z =
1√
|det M|

exp

[
−m2

4 ∑
i,j

(
M−1

)
i,j

]
. (II.3.7)

We have to calculate the sum over all entries of the inverse interaction matrix M−1.
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II.3. Magnetic field

II.3.1. One dimension

We consider the one-dimensional Gaussian chain with periodic and free boundary
conditions.

II.3.1.1. Periodic boundaries

We know the inverse matrix M−1
p from Sec. A.2. To illustrate the calculations, we

only consider the case of odd system sizes N.

(
M−1

p

)
i,j
=

1
N(−1 + K)

+
2
N

N−1
2

∑
n=1

sin 2π n
N i sin 2π n

N j + cos 2π n
N i cos 2π n

N j
−1 + K cos

(
2π n

N

) . (II.3.8)

One can easily verify that

n

∑
i=1

sin 2π
n
N

i =
n

∑
i=1

cos 2π
n
N

i = 0, for n = 1, ...,
N − 1

2
. (II.3.9)

Thus, we immediately obtain

−1
4

ht M−1
p h = −m2

4 ∑
i,j

(
M−1

p,1d

)
i,j
=

m2

4
N

1− K
. (II.3.10)

The free energy of the system reads

βFp(N, β, m) = βFp(N, β, 0)− m2

4
N

1− K
. (II.3.11)

One should note that the constant field is an eigenvector of the interaction matrix Mp
for periodic boundary conditions. In the next step we consider eigenvector fields.

Eigenvectors and general fields

We consider a magnetic field which is an arbitrary eigenvector of the interaction
matrix Mp. The possible eigenvalues 1/λn = −1/(1−K cos 2πn/N) lie in the range

1
λn
∈
[
− 1

1− |K| ,−
1

1 + |K|

]
, (II.3.12)

see Sec. A.2 for detailed calculations. The magnetic contribution to the free energy
can assume the values

−1
4

ht M−1
p h ∈

[
m2

4
N

1 + |K| ,
m2

4
N

1− |K|

]
. (II.3.13)

44



II.3.1. One dimension

If we assume the magnetic field to be an arbitrary linear combination of eigenvectors
Φ of M−1

p , i.e.

h =
N

∑
j=1

aj Φj, ai ∈ R, (II.3.14)

the magnetic contribution reads

−1
4

ht M−1
p h =

N m2

4

N

∑
j=1

a2
j

∣∣∣λ−1
j

∣∣∣ . (II.3.15)

Thus, the magnetic contribution is always positive due to the fact that the interaction
matrix and its inverse is negative definite.

II.3.1.2. Free boundaries

The interaction matrix M f ,1d is Toeplitz, its inverse is known, see [14] for detailed
derivation or Sec. A.2 for a brief summary of the important properties:(

M−1
f

)
i,j
=

2
N + 1

N

∑
k=1

sin iΘk sin jΘk

−1 + K cos Θk
, (II.3.16)

Θk = π
k

N + 1
. (II.3.17)

We rewrite the partition sum:

Z(N, β, h) = Z f ,1d(N, β) exp
[
−1

4
ht M−1

f ,1dh
]

, (II.3.18)

−1
4

ht M−1
f ,1dh =

m2

2
1

N + 1

N

∑
i,j,k=1

sin iΘk sin jΘk

1− K cos Θk
. (II.3.19)

The difficulty lies in simplifying the sum

Σ1d :=
1

N + 1

N

∑
i,j,k=1

sin iΘk sin jΘk

1− K cos Θk
. (II.3.20)

Using the additions theorem from Sec. A.1, we obtain
N

∑
i=1

sin iΘk =

{
sin Θk

1−cos Θk
, if k odd,

0, else.
=

{
1+cos Θk

sin Θk
, if k odd,

0, else.
(II.3.21)

For the sake of simplicity, let N be odd and let n, the function f and the angles αk be
defined as:

2n + 1 := N, (II.3.22)

f (K, ϕ) :=
1

1− K cos ϕ
, (II.3.23)

αk := π
2k + 1

2(n + 1)
. (II.3.24)
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Then we obtain

Σ1d =
1

2(n + 1)

n

∑
k=0

1 + cos αk

1− cos αk
f (K, αk). (II.3.25)

One should note that the sum diverges for N → ∞:

1 + cos αk

1− cos αk
f (K, αk) = O

(
N2) . (II.3.26)

We start by isolating the divergent part:

Σ1d =
f (K, 0)

2(n + 1)

n

∑
k=0

1 + cos αk

1− cos αk
+

1
2(n + 1)

n

∑
k=0

1 + cos αk

1− cos αk
( f (K, αk)− f (K, 0))

=
f (K, 0)

2(n + 1)

n

∑
k=0

1 + cos αk

1− cos αk
− K

1− K
1

2(n + 1)

n

∑
k=0

1− cos αk

1− K cos αk
. (II.3.27)

For large N, the second sum can be transformed into an integral using the Euler-
Maclaurin formula, see Sec. A.4:

−K
1− K

1
(n + 1)

n

∑
k=0

1− cos αk

1− K cos αk
=
−K

1− K
1
π

∫ π

0
dϕ

1− cos ϕ

1− K cos ϕ
+ Rn

=− 1 + K−
√

1− K2

(1− K2)
+ Rn. (II.3.28)

In the remaining part of this section, we omit all contributions Rn which result from
transforming sums into integrals and vanish exponentially with the system size.
Furthermore, we can simplify the terms in the first sum in Σ1d:

1 + cos αk

1− cos αk
=

2
1− cos αk

− 1. (II.3.29)

Thus, for large N we obtain

Σ1d =
1

1− K
1

n + 1

n

∑
k=0

1
1− cos αk

− 1
1− K

+
1

2
√

1− K2
. (II.3.30)

Here, all contribution which decay exponentially with N have been omitted. One
should note that cos αk are the zeros of the Chebyshev polynomials of the first kind
Tn+1, see Sec. A.3:

Tn+1(x) =
n

∏
k=0

(x− cos αk) . (II.3.31)

This helps us to further simplify the expressions. For any polynomial P with the
zeros xk, k = 1, .., n the following relation holds:

n

∑
k=1

1
x− xk

=
P′(x)
P(x)

. (II.3.32)
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Using the properties of the Chebyshev polynomials we obtain

n

∑
k=0

1
1− cos αk

=
T′n+1(1)
Tn+1(1)

= (n + 1)2. (II.3.33)

Therefore, we have estimated Σ1d up to exponentially vanishing contributions:

Σ1d = (n + 1)
1

1− K
− 1

1− K
+

1
2
√

1− K2

=
N
2

1
1− K

− 1
2

[
1

1− K
− 1√

1− K2

]
. (II.3.34)

The free energy βF of the one-dimensional Gaussian chain with free boundary con-
ditions and a constant magnetic field reads

βFf(N, β, m) = − log Z(N, β, m)

= βFf(N, β, 0)− m2

4

[
N

1− K
− 1

1− K
+

1√
1− K2

]
= βF(N, β, 0) + N m1d

0 + m1d
1 . (II.3.35)

Here we defined the magnetic volume and the surface contributions m1d
0 , m1d

1 as

m1d
0 = −m2

4
1

1− K
,

m1d
1 =

m2

4

[
1

1− K
− 1√

1− K2

]
. (II.3.36)

One can see these coefficients as a function of the coupling K in Fig. II.3.1.

II.3.2. Two dimensions

In this section we examine the influence of a magnetic field on the two-dimensional
Gaussian model. For the sake of simplicity we consider the square consisting of
N × N Gaussian spins. We discuss the case of a constant magnetic field in detail
and briefly summarise the situation of the magnetic vector h as an eigenvector of the
interaction matrix. We start with toroidal boundary conditions.

II.3.2.1. Toroidal boundaries

In accordance to Sec. II.2.2.1, the constant field

h = m (1, ..., 1)t (II.3.37)

is an eigenvector of M−1
t with the eigenvalue 1/(−1 + 2K). Therefore,

−1
4

ht M−1
t h =

1
4

1
1− 2K

‖h‖2 =
m2

4
N2

1− 2K
. (II.3.38)
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Figure II.3.1.: Thermodynamic coefficients which occur after applying a magnetic
field h on a one-dimensional Gaussian chain, see Eq. (II.3.36). Dash-
dotted: the volume coefficient −4 m1d

0 /m2, which diverges linearly for
K → 1. Solid line: surface coefficient −4 m1d

1 /m2. This coefficient di-
verges as K1/2 for K → −1 and linearly for K → 1.

And the free energy reads

βF2d
t (N, β, m) = βF2d

t (N, β, 0)− m2

4
N2

1− 2K
. (II.3.39)

In analogy to the toroidal system without a magnetic field, we consider this magnetic
term contribution as the volume contribution.

II.3.2.2. Free boundaries

In the next step we discuss free boundary conditions. The inverse interaction matrix
is known, see [14] and Sec. A.2:

(
M−1

f ,2d

)
(i,j)(i′,j′)

=
4

(N + 1)2

N

∑
k,l=1

sin iΘk sin jΘk sin i′Θl j′Θl

−1 + K cos Θk + K cos Θl
. (II.3.40)

In analogy to the one-dimensional case, we define the sum Σ2d,

Σ2d :=
1

(N + 1)2

N

∑
i,i′,j,j′=1

N

∑
k,l=1

sin iΘk sin jΘk sin i′Θl j′Θl

−1 + K cos Θk + K cos Θl
. (II.3.41)

48



II.3.2. Two dimensions

We start with the summation over i, i′, j, j′ and assume N = 2n + 1 odd:

Σ2d =
1

2(n + 1)

n

∑
l=0

1 + cos αl

1− cos αl

1
2(n + 1)

n

∑
k=0

1 + cos αk

1− cos αk

1
−1 + K cos αk + K cos αl

.

(II.3.42)

The second sum has been covered in the one-dimensional case:

1
2(n + 1)

n

∑
k=0

1 + cos αk

1− cos αk

1
−1 + K cos αk + K cos αl

= − N − 1
2

1
1− K− K cos αl

− 1

2
√
(1− K cos αl)

2 − K2
.

(II.3.43)

We evaluate both summands separately and the first summand Σ(1)
2d , again, can be

calculated in analogy to d = 1:

Σ(1)
2d := −N − 1

2
1

2(n + 1)

n

∑
l=0

1 + cos αl

1− cos αl

1
1− K− K cos αl

= − (N − 1)2

4
1

1− 2K
− N − 1

4
√

1− 2K
. (II.3.44)

The second summand, Σ(2)
2d , can be calculated with similar methods:

Σ(2)
2d := − 1

4(n + 1)

n

∑
l=0

1 + cos αl

1− cos αl

1√
(1− K cos αl)

2 − K2
. (II.3.45)

As in d = 1, both terms diverge with growing system size N2. We define the function
g:

g(K, ϕ) :=
[
(1− K cos ϕ)2 − K2

]− 1
2

, (II.3.46)

and isolate the singularities:

Σ(2)
2d =− 1

4(n + 1)

n

∑
l=0

1 + cos αl

1− cos αl
g(K, 0)

− 1
4(n + 1)

n

∑
l=0

1 + cos αl

1− cos αl
(g(K, αk)− g(K, 0)) . (II.3.47)

In the next step we consider large system sizes and transform the second sum into
an integral using the Euler-Maclaurin formula. Once again we omit all contributions
which vanish exponentially with the system size:

Σ(2)
2d = −N

4
(1− 2K)−1/2 − 1

4π

∫ π

0
dϕ

1 + cos ϕ

1− cos ϕ
[g(K, ϕ)− g(K, 0)] . (II.3.48)
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We sort the different contributions from Σ(1)
2d , Σ(2)

2d with respect to different powers
of N and obtain

Σ2d =− N2

4
1

1− 2K
+

N
2

[
1

1− 2K
− 1√

1− 2K

]
− 1

4

[
1

1− 2K
− 1√

1− 2K
+

1
π

∫ π

0
dϕ

1 + cos ϕ

1− cos ϕ
[g(K, ϕ)− g(K, 0)]

]
. (II.3.49)

Finally, the free energy reads

βF2d
f (N, β, m) = βF2d

f (N, β, 0) + N2 m2d
0 + 4N m2d

1 + m2d
2 . (II.3.50)

Here we defined the magnetic coefficients m2d
0 , m2d

1 , m2d
2 which correspond to the

volume, the surface and the corner contribution to the free energy respectively:

m2d
0 = −m2

4
1

1− 2K
,

m2d
1 =

m2

2

[
1

1− 2K
− 1√

1− 2K

]
,

m2d
2 = −m2

4

[
1

1− 2K
− 1√

1− 2K
+

1
π

∫ π

0
dϕ

1 + cos ϕ

1− cos ϕ
[g(K, ϕ)− g(K, 0)]

]
.

(II.3.51)

The coefficients are plotted on the left plot in Fig. II.3.2 as functions of the coupling
K. Additionally, one can see the linear divergence of m2d

2 for K → −1/2 in a double
logarithmic plot on the right side of Fig. II.3.2.

II.3.2.3. Boundary field

One special choice of the magnetic field in two dimensions is the constant boundary
field, i.e. a magnetic field which only interacts with the boundary spins. This type of
magnetic field can also be interpreted as boundary conditions where the outer spins
of the system linearly couple to an external potential. We decompose the field h:

h = h1 + h2 ∈ RN2
,

h1 = m (1, 0, ..., 0) ∈ RN2
,

h2 = m (e1, ..., e1) ∈ RN2
,

e1 = (1, 0, ..., 0) ∈ RN ,

1 = (1, 1, ..., 1) ∈ RN . (II.3.52)
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Figure II.3.2.: Left: thermodynamic coefficients which arise after applying a constant
magnetic field to a N × N domain of Gaussian spins, see Eq. (II.3.51).
Solid line: the volume coefficient m2d

0 /m2. Dash-dotted line: the sur-
face coefficient m2d

1 /m2. Both coefficients diverge linearly as K → 0.5,
as can be seen from Eq. (II.3.51). Dashed line: topological coeffi-
cient m2d

2 /m2, which also diverges linearly for K → 0.5, see the plot
on the right-hand side. Right: topological coefficient m2d

2 as a func-
tion of δK := 0.5 − K in a double-logarithmic plot for values δK =
10−1, ..., 10−8, see Eq. (II.3.51). Through comparison with the function
− log δK − 7 (solid line), one can recognise the linear divergence of
m2d

2 .

The scalar product ht M−1
f ,2dh reads:

−1
4

ht
(

M2d
f

)−1
h = −m2

2

N

∑
i,j=1

[(
M2d

f

)−1

(1,1)(i,j)
+
(

M2d
f

)−1

(1,i)(j,1)

]
(II.3.53)

=
2 m2

(N + 1)2

N

∑
i,j,k,l=1

sin Θk sin jΘl (sin Θk sin iΘl + sin iΘk sin Θl)

1− K cos Θk − K cos Θl
.

We decompose this expression into two components, A, B, and calculate them sep-
arately:

A :=
1

(N + 1)2

N

∑
i,j,k,l=1

sin2 Θk sin iΘl sin jΘl

1− K cos Θk − K cos Θl
, (II.3.54)

B :=
1

(N + 1)2

N

∑
i,j,k,l=1

sin iΘk sin Θk sin jΘl sin Θl

1− K cos Θk − K cos Θl
. (II.3.55)

One can recognise that A corresponds to the interaction of the magnetic field h1 or
h2 with itself. On the other hand, B represents the interaction between both fields h1
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and h2. Starting with A, we convert the k-sum into an integral:

A =
1

(N + 1)K2

N

∑
i,j,l=1

sin iΘl sin jΘl

(
1− K cos Θl −

√
(1− K cos Θl)2 − K2

)
.

(II.3.56)

To keep the calculations short we, once again, restrict them to the case N = 2n + 1
odd and carry out the summation over i, j:

A =
1

2(n + 1)K2

n

∑
l=0

1 + cos αl

1− cos αl

(
1− K cos αl −

√
(1− K cos αl)2 − K2

)
. (II.3.57)

Isolating the divergent contribution results in

A =
N
2

1− K−
√

1− 2K
K2 +

1
2K

(II.3.58)

+
1

2π K2

∫ π

0
dϕ

1 + cos ϕ

1− cos ϕ

[√
1− 2K−

√
(1− K cos ϕ)2 − K2

]
.

In the next step we approach the term B. In contrast to the one-dimensional calcu-
lations and the contribution A (which describes the self-interaction of a field with
itself), no diverging sums occur in B. This leads to the fact that B features no exten-
sive, i.e. growing linearly with the size N of the field, contributions. The summation
over i, j yields

B =
1

4(n + 1)2

n

∑
k,l=0

(1 + cos αk)(1 + cos αl)

1− K cos αk − K cos αl
. (II.3.59)

Performing the Euler-Maclaurin transformation once again gives us

B =
1

4(n + 1)

n

∑
l=0

(1 + cos αl)
1
π

∫ π

0
dϕ

1 + cos ϕ

1− K cos ϕ− K cos αl

= − 1
4(n + 1)K

n

∑
l=0

(1 + cos αl)

1−

√
(1− K cos αl)

2 − K2

1− K− K cos αl


= − 1

4 K

1− 1
π

∫ π

0
dϕ (1 + cos ϕ)

√
(1− K cos ϕ)2 − K2

1− K− K cos ϕ

 . (II.3.60)

We have finally calculated the total contribution of a boundary magnetic field to the
free energy:
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βF− βF
∣∣
m=0

m2 =− N
1− K−

√
1− 2K

K2

− 1
K
− 1

π K2

∫ π

0
dϕ

1 + cos ϕ

1− cos ϕ

[√
1− 2K−

√
(1− K cos ϕ)2 − K2

]

+
1

2 K

1− 1
π

∫ π

0
dϕ (1 + cos ϕ)

√
(1− K cos ϕ)2 − K2

1− K− K cos ϕ

 . (II.3.61)

The first and the second line correspond to the extensive, i.e. growing with the
system size, and the non-extensive contributions which arise from the interaction
of h1 and h2 with itself. The third line corresponds to the interaction between both
boundary fields h1 and h2. All three contributions are plotted in Fig. II.3.3.
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Figure II.3.3.: Left: contributions of a boundary field to the free energy of a N × N
Gaussian stripe. The magnetic part of the free energy consists of the
interaction of the boundary magnetic fields h1, h2 with itself – this con-
tribution has an extensive and a non-extensive part, see Eq. (II.3.61).
Furthermore, there is a non-extensive interaction between h1 and h2.
While the extensive part of the interaction of a boundary field with it-
self (solid line) remains finite for all allowed coupling strengths, both
the non-extensive part of the self-interaction (dash-dotted line) and
the interaction coefficients between two boundary fields diverge for
K → 1/2. Right: divergent parts of the boundary field free energy
plotted versus log 1/2−K for values 1/2−K ∈

{
10−1, 10−2, ..., 10−8},

see Eq. (II.3.61). One can see that both functions are logarithmically
divergent for K → 1/2.
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II.3.3. Summary

We applied a constant magnetic field to a Gaussian chain in one dimension and a
constant volume magnetic field as well as a constant boundary field to a Gaussian
N × N strip in two dimensions. The constant boundary field can also be interpreted
as another type of boundary conditions, in addition to the free, the cylindric and the
periodic boundary conditions from Sec. II.2.2.

The introduction of a magnetic field in one dimension expectedly leads to additive
contributions to the free energy of the system and breaks the K 7→ −K symme-
try between the ferromagnetic and the anti-ferromagnetic coupling, see Eq. (II.3.36).
These additional contributions can be interpreted as volume and surface terms in ac-
cordance to Eq. (I.0.4). All additional contributions to the free energy beyond these
geometric contributions decay exponentially with the system size.

The introduction of a bulk magnetic field in two dimensions leads to additional con-
tributions to the free energy of the system, see Eq. (II.3.51). These contributions break
the symmetry between the ferromagnetic and the anti-ferromagnetic coupling and
can be interpreted as the volume, the surface and the corner contributions to the free
energy, according to Eq. (I.0.4). A constant magnetic field along the boundary of the
system leads to additional corner and surface contributions. All remaining terms
vanish exponentially with the system size in the thermodynamic limit.
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Part III.

Non-convex geometries





In the previous part of this thesis we discussed the Gaussian model in several di-
mensions for convexly shaped containers D, i.e. for N1 × N2 × ...× Nd rectangular
lattices. For this type of lattices, we estimated all contributions to the free energy
which scale as Nd, Nd−1, ..., N0 and interpreted these contributions as the volume
energy, the surface energy, etc. However, in order to justify this interpretation and to
verify the decomposition Eq. (I.0.4), we, in fact, have to calculate the partition sum
for arbitrarily shaped containers D, in particular for non-convex containers. The
straight-forward way to calculate such partition sums is to write down the interac-
tion matrix and evaluate its determinant. Unfortunately, even simple non-convex
geometries feature a complicated interaction matrix. In this section we introduce the
methods which allow us to evaluate the free energy for non-convex container ge-
ometries. We start by introducing two different analytical tools which help evaluate
partition sums of Gaussian systems. After that we consider one special non-convex
lattice container, the non-convex building block, and show that evaluating its par-
tition sum allows us to evaluate the partition sum of a large variety of non-convex
domains, see Eq. (III.1.42). Finally, we present examples of lattice domains which
can not be treated with this method and lay out alternative methods to access the
corresponding partition sums. The last section of this part of the thesis concerns
itself with the evaluation of the partition sum of the non-convex building block.
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III.1. Analytic approach

In this section we introduce two different methods to approach non-convex geome-
tries: the spin freezing, which allows us to introduce defects in a convex container,
and the zip method, which is used for building non-convex containers from convex
building blocks. The mathematical background for this section is the treatment of
the Gaussian model in presence of magnetic fields, see Chap. II.3. In the last part of
this section, we apply the developed tools to calculate partition sums of non-convex
lattice domains.

III.1.1. Freezing spins

We consider a rectangular d-dimensional Gaussian stripe consisting of N lattice sites
with the attached spins s1, ..., sN and a given choice of boundary conditions. For a
n-tuple of pairwise different indices i(1), ..., i(n) ∈ {1, ..., N}, we define the index set

I := {i(1), ..., i(n)} . (III.1.1)

We introduce the condition

si = 0 ∀ i ∈ I. (III.1.2)

The goal of this section is to calculate the partition sum of the system with the side
condition Eq. (III.1.2). One should note that the “freezing” of the spins si = 0 ∀ i ∈ I,
i.e. setting their values to zero, impacts the general lattice geometry: In the one-
dimensional case the system partitions in several one-dimensional subsystems. In
higher dimensions, depending on the choice of I, this can lead to non-convex con-
tainer geometries. The new system has the size N − n. We write down the partition
sum using the Dirac delta function,

Z = π−
N−n

2

∫
RN

dNs exp
(
st Ms

) n

∏
j=1

δ(si(j)). (III.1.3)

Representing the delta using the Fourier transformation,

δ(x) =
∫ ∞

−∞

dk
2π

exp (ikx) , (III.1.4)

transforms the partition sum into

Z = π−
N−n

2

∫
Rn

dnk
(2π)n

∫
RN

dNs exp
(
st Ms + iκts

)
. (III.1.5)

59



III.1. Analytic approach

Here, the vector κ reads

κi =

{
k j, if i = i(j) for any j,
0, else.

(III.1.6)

Apparently, the side condition Eq. (III.1.2) results in a complex magnetic field iκ,
which has to be integrated. Applying the results from Chap. II.3, we obtain

Z =
1√

det(−M)

∫
Rn

dnk
(2π)n exp

(
1
4

κt M−1κ

)
. (III.1.7)

We define the matrix M−1
I ∈ Mat (n× n, R) as the matrix obtained from M−1 by

omitting all rows and columns except for the rows and columns i(1), ..., i(n). Using
this definition, we rewrite the partition sum as:

Z =
1√

det(−M)det(−M−1
I )

. (III.1.8)

The challenge lies in calculating the determinant of the sub-matrix M−1
I .

III.1.1.1. Examples

This section demonstrates the application of the spin freezing method. We discuss
examples of already known systems in one and two dimensions and present new
results in two dimensions.

One-dimensional systems

As our first example, we study the application of the spin freezing on the 1d Gaus-
sian chain with periodic boundary conditions. The interaction matrix and its inverse
is known from Sec. A.2. All results, in particular the entries of the inverse interaction
matrix, are considered in the limit N → ∞. We discuss both cases of n = 1 and n = 2
frozen spins.

For n = 1 the submatrix M−1
p,I is a 1 × 1 matrix, the only entry (which is also the

determinant of the matrix) reads for N → ∞

det
(
−M−1

p,I

)
=

1√
1− K2

. (III.1.9)

The free energy of the one-dimensional periodic Gaussian chain and one frozen spin
reads

βF = (N − 1) f 1d
0 + f 1d

1 , (III.1.10)
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with the thermodynamic coefficients f 1d
0 , f 1d

1 of the Gaussian model in one dimen-
sion, see Sec. II.2.1.4. As expected, the freezing of the spin breaks the periodicity
and introduces free boundary conditions: The free energy equals the free energy of
a Gaussian chain of the length N − 1 with free boundary conditions.

For n = 2 frozen spins we have to distinguish: either both spins lie next to each other
or they are separated by one or more spins. In the second case, the separation grows
linearly with N as we consider the thermodynamic limit. Since the original system
has periodic boundary conditions and is translational invariant we can chose the
first and the j-th spin to be set to zero. The case of neighbouring spins corresponds
to j = 2 (or j = N) while the case of separated spins results in j ∝ N → ∞. In the
case of adjacent spins, the 2× 2 matrix M−1

p,I has the form:

M−1
p,I =

 − 1√
1−K2

−1+
√

1−K2

K
√

1−K2

−1+
√

12−K2

K
√

1−K2 − 1√
1−K2

 , for N → ∞. (III.1.11)

Thus, the free energy of the one-dimensional periodic Gaussian chain with two ad-
jacent frozen spins reads

βF = (N − 2) f 1d
0 + f 1d

1 . (III.1.12)

As expected, the free energy equals the free energy of the one-dimensional free Gaus-
sian chain of length N − 2. In case of separated frozen spins, j ∝ N → ∞, the off-
diagonal entries of M−1

p,I vanish:

M−1
p,I =

[
− 1√

1−K2 0
0 − 1√

1−K2

]
, for N → ∞, (III.1.13)

and we obtain

βF = (N − 2) f 1d
0 + 2 f 1d

1 . (III.1.14)

This free energy corresponds to two separated Gaussian chains with free boundary
conditions with the lengths N1, N2 which fulfill the side condition N1 + N2 = N− 2.

Cylindric boundary conditions in two dimensions

As a more sophisticated example of the freezing method we consider the N × M
Gaussian strip with toroidal boundary conditions, see Sec. II.2.2.1. We set the values
of the first row, i.e. the first N spins to zero. In this example we demonstrate that
using the freezing method we end up with the two-dimensional N× (M− 1) Gaus-
sian strip with cylindric boundary conditions. The index set I and the partition sum
Z read

I = {1, 2, ..., N} , (III.1.15)

Z =
[
det (−Mt)det

(
−M−1

t,I

)]− 1
2

. (III.1.16)

61



III.1. Analytic approach

The matrix Mt is the interaction matrix of the two-dimension N × M system with
toroidal boundary conditions, see Sec. II.2.2.1. The matrix M−1

t,I is the upper left
N × N submatrix of Mt−1 and reads for large N, up to exponentially decaying con-
tributions:(

M−1
t,I

)
k,l

=
(

M−1
t,I

)
(i,j)(k,l)

∣∣∣∣
i=j=1

=
1

2π2

∫
[0,2π]2

d2ϕ
cos ϕ2(k− l)

−1 + K ∑2
m=1 cos ϕm

. (III.1.17)

The matrix M−1
t,I is Toeplitz and circulant. To calculate its determinant, we apply the

Szegö theorem, see [4], [24]. The symbol f reads for large system sizes

f (x) =
1√

(1− K cos x)2 − K2
. (III.1.18)

Applying the Szegö theorem yields

log det
(
−M−1

t,I

)
=

N
2π

∫ 2π

0
dx log

1√
(1− K cos x)2 − K2

+ R (N, K) . (III.1.19)

If we assume that the Fourier series of the symbol f converges exponentially fast
towards f , then the remaining contribution R vanishes faster than any power of the
system size as we consider the thermodynamic limit. We rewrite the result omitting
the term R:

βF = − log Z = NM f 2d
0 +

1
2

log det
(
−M−1

t,I

)
(III.1.20)

= NM f 2d
0 +

N
2π

∫ π

0
dϕ log

1√
(1− K cos ϕ)2 − K2

= N(M− 1) f 2d
0 + 2N f 2d

1 .

(III.1.21)

As expected, this is the free energy of the N× (M− 1) Gaussian strip with cylindric
boundary conditions, see Sec. II.2.2.2.

III.1.2. Zip method

In this section we introduce another method which allows us to approach non-
convex Gaussian domains: the so-called zip method. The basic idea behind this
method is to partition a non-convex lattice into rectangular blocks (which scale in
both directions as the system grows) which are connected (or separated) by single
spin lines. Treating the spin lines as arbitrary magnetic fields then allows us to cal-
culate the partition sums of the convex blocks (with the values of the spin lines as
variables) and afterwards integrate the magnetic “zips”. It is shown in Sec. III.1.3
that this method allows us to calculate any arbitrary non-convex lattice configura-
tion which scales “reasonably” in the thermodynamic limit. We start by introducing
the zip method using the already known examples of two-dimensional rectangular
stripes with free boundary conditions.

62



III.1.2. Zip method

III.1.2.1. Introduction

We introduce the zip method by considering the two-dimensional Gaussian stripe
with free boundary conditions, which is partitioned by a zip magnetic field in two
different ways. For the sake of simplicity, we only consider a N × (N + 1) and a
N × (2N + 1) stripe. The generalisation to arbitrary side lengths will be obvious
from these calculations.

One convex block

We consider a N × N Gaussian block with an applied magnetic field h (the zip) at
the boundary which is to be considered part of the system and integrated in order
to obtain the partition sum. See Fig. III.1.1 for an illustration of the system. The

N

N

h

Figure III.1.1.: Two-dimensional Gaussian block with an applied magnetic field h at
the boundary.

partition sum Z1 of the N × N block without the magnetic field reads

Z1 = π−
N2
2

∫
dN2

s exp
(
st Ms

)
= |detM|−

1
2 , (III.1.22)

here we omit the indices of the matrix to keep the notation short: M is the interaction
matrix of the N × N Gaussian stripe with free boundary conditions, see Sec. II.2.2.4.
The full partition sum Z of the system can be obtained by integrating the magnetic
field.

Z =π−
N(N+1)

2

∫
dNh

∫
dN2

s exp
(
st Ms + Khts + ht Mfh

)
=

π−
N
2

|det M| 12

∫
dNh exp

(
−K2

4
ht M−1

I h + ht Mfh
)
= Z1 ∆Z. (III.1.23)

The matrix M−1
I corresponds to the index set I = {1, ..., N} according to Sec. III.1.1,

i.e. it is the upper left N × N submatrix of M−1 (see Sec. A.2 for details on M−1).
The matrix Mf is the interaction matrix of the one-dimensional Gaussian chain of
length N with free boundary conditions. By applying and integrating the magnetic
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field h, the partition sum Z1 is multiplied by an additional partition sum ∆Z which
describes the interaction of h with itself and the main system. In order to calculate
∆Z, we can diagonalise M−1

I using the orthonormal transformation F which also
diagonalises Mf

Fi,j =

√
2

N + 1
sin ij

π

N + 1
. (III.1.24)

Applying the transformation, we obtain

−K2

4
FM−1

I F =
K2

2(N + 1)

N

∑
l=1

sin2 Θl diag (1− K cos Θl − K cos Θn)
−1
n , (III.1.25)

Θi := i
π

N + 1
. (III.1.26)

The notation diag(an)n corresponds to a diagonal matrix with the entries a1, ..., aN on
its main diagonal. Once again, we apply the Euler-Maclaurin summation formula
and omit all contributions which decay exponentially with N:

−K2

4
FM−1

I F =
K2

2(N + 1)

N

∑
l=1

diag
(

1− cos2 Θl

1− K cos Θl − K cos Θn

)
n

=
K2

2
1
π

∫ π

0
dϕ diag

(
1− cos2 ϕ

1− K cos Θn − K cos ϕ

)
n

=
1
2

diag
(

1− K cos Θn −
√
(1− K cos Θn)

2 − K2

)
n

.

From Sec. A.2 we already know the eigenvalues of Mf:

FMfF = diag (−1 + K cos Θn)n . (III.1.27)

Thus, the interaction matrix in the exponent of Eq. (III.1.23) reads

F
(
−K2

4
M−1

I + Mf

)
F = −diag

(
1− K cos Θn +

√
(1− K cos Θn)2 − K2

2

)
n

.

(III.1.28)

To evaluate the zip partition sum ∆Z, we calculate the determinant of this matrix:

log
∣∣∣∣det

(
−K2

4
M−1

I + Mf

)∣∣∣∣ = N

∑
n=1

log

[
1− K cos Θn +

√
(1− K cos Θn)2 − K2

2

]
.
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Applying the Euler-Maclaurin formula results in

N

∑
n=1

log [...] =
N + 1

π

∫ π

0
dϕ log

1− K cos ϕ +
√
(1− K cos ϕ)2 − K2

2

− 1
2

log

[(
1− K +

√
1− 2K

) (
1 + K +

√
1 + 2K

)
4

]

= 2(N + 1) f 2d
0 −

1
2

log

[(
1− K +

√
1− 2K

) (
1 + K +

√
1 + 2K

)
4

]
.

(III.1.29)

Therefore, the additional contribution log ∆Z of the magnetic zip to the free energy
log Z1 of the N × N Gaussian stripe reads

− log ∆Z = N f 2d
0 + 2 f 2d

1 . (III.1.30)

As introduced in Sec. II.2.2.5, f 2d
0 , f 2d

1 is the volume and the surface coefficient of
the two-dimensional Gaussian model. As expected, the magnetic zip increases the
volume of the system by N and the surface by 2.

Two blocks

As another example of the zip method and in order to prepare further calculations,
we consider the following system: two N× N Gaussian blocks connected by a chain
of Gaussian spins of length N (the magnetic zip), see Fig. III.1.2 for details. We start
by calculating the partition sums of both block systems and integrate the magnetic
field afterwards. We denote the partition sums of the blocks without the magnetic

h

N

N

N

N

∆Z

Z Z
21

Figure III.1.2.: Two N × N Gaussian blocks zipped together by a magnetic chain of
length N. We denote the partition sums of both block systems without
the magnetic field with Z1, Z2. The partition sum which arises from
integrating the magnetic field is denoted as ∆Z.
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field with Z1, Z2 (see Sec. II.2.2.4 for results and details on calculations):

− log Z1 = − log Z2 = N2 f 2d
0 + 4N f 2d

1 + f 2d
2 . (III.1.31)

The total partition sum Z can be written as

Z = Z1Z2∆Z. (III.1.32)

∆Z is the partition sum of the magnetic field. There are two ways to estimate ∆Z:
We can consider the whole system as one N × (2N + 1) Gaussian stripe with free
boundary conditions. The partition sum of this system is known from Sec. II.2.2.4.
Since both subsystems Z1, Z2 are equal, we obtain

− log Z = −2 log Z1 − log ∆Z = N(2N + 1) f 2d
0 + 2(3N + 1) f 2d

1 + f 2d
2 . (III.1.33)

Solving for ∆Z yields:

− log ∆Z = N f 2d
0 − 2(N − 1) f 2d

1 − f 2d
2 . (III.1.34)

Alternatively, we can estimate the interaction matrix of the magnetic field (after trac-
ing out the subsystems Z1, Z2) and calculate the partition sum explicitly. In analogy
to Eq. (III.1.23), we obtain

Z =
π−

N
2

|detM|

∫
dNh exp

(
−K2

2
ht M−1

I h + ht Mfh
)
= Z1 ∆Z.

The matrix M−1
I is, once again, the upper left N × N submatrix of the N2 × N2 in-

verse interaction matrix of the subsystems Z1, Z2. In the previous example we have
already diagonalised both M−1

I and Mf using the discrete sine transformation F:

Ft
(

Mf −
K2

2
M−1

I

)
F = −diag

(√
(1− K cos Θn)2 − K2

)
n

. (III.1.35)

The determinant can be calculated via the Euler-Maclaurin summation formula

− log ∆Z =− log
∣∣∣∣(√(1− K cos Θn)2 − K2

)
n

∣∣∣∣
=

N
4

log

(
1 + K +

√
1 + 2K

) (
1− K +

√
1− 2K

)
4

+
1
4

log

(
1 + K +

√
1 + 2K

) (
1− K +

√
1− 2K

)
4
√

1− 4K2

= N f 2d
0 − 2(N − 1) f 2d

1 − f 2d
2 . (III.1.36)

As expected the zip partition sum modifies the volume by N and reduces the surface
of the whole system by 2(N − 1). Additionally, it removes four corners from the
system: Both subsystems Z1, Z2 have eight corners while the final system after the
integration of the zip has only four corners, thus the contribution − f 2d

2 .
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III.1.2.2. Non-convex building block

Consider the system depicted in Fig. III.1.3: three N × N blocks separated by spin
lines h1, h2 of length N, arranged such that they build a corner. The choice of
equal side lengths is arbitrary, the generalisation to different side lengths is straight-
forward. In the remaining part of this thesis this lattice domain is referred to as the
non-convex building block. By partitioning the system in this way we obtain three

h

h

Z
2

∆

N

N

N

N

N

N

Z

Z

Z

Z∆

2

1

1

1

Z∆

2 3

1

Figure III.1.3.: Basic non-convex domain configuration. The partition sums Z1, Z2,
Z3 are the partition sums of the N× N Gaussian blocks without mag-
netic field. The partition sum ∆Z1 refers to the partition sum of a spin
line between two blocks (the degrees of freedom of the blocks already
traced out) and has been discussed in Sec. III.1.2.1. The partition sum
∆Z2 corresponds to the interaction between both magnetic fields.

different types of partition sums: Partition sums Z1, Z2, Z3, which correspond to
N × N Gaussian blocks with free boundary condition without magnetic fields. Par-
tition sum ∆Z1, which describes the interaction of a spin line between two blocks
and was discussed in the examples in Sec. III.1.2.1. And, finally, partition sum ∆Z2,
which is responsible for the interaction of both spin zips between each other. We can
write down the total partition sum Z in a straight-forward manner:

Z = π−NZ3
1

∫
dNh1

∫
dNh2 exp

(
ht Ah

)
. (III.1.37)
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The contribution Z1 is known. The magnetic field h and the matrix A read

h = (h1, h2)
t ∈ R2N , (III.1.38)

A =

[
Mf − K2

2 M−1
I ∆M

∆M Mf − K2

2 M−1
I

]
(III.1.39)

The matrices M−1
I , ∆M are N× N submatrices of the inverse M−1 of the interaction

matrix of the two-dimensional Gaussian block with free boundary conditions. The
index set I = {1, ..., N} is the same as in the previous examples in Sec. III.1.2.1. The
matrix ∆M is given by

(∆M)i,j = −
K2

4
M−1

(1,i)(j,1). (III.1.40)

M−1 is a block matrix, the first pair of indices numerates the blocks, the second
pair of indices numerates the entries in the block. It should be pointed out that the
matrix Mf − K2

2 M−1
I is the interaction matrix of a spin line consisting of N spins,

which connects two N × N spin blocks, see Sec. III.1.2.1. Its determinant equals
∆Z1 and is known from the second example in Sec. III.1.2.1. Obviously, the matrix
∆M is responsible for the interaction between both magnetic fields h1, h2. We dis-
cuss the properties of ∆M and A in detail and evaluate the relevant determinants in
Chap. III.2. For now, we assume that the determinant of A is known. It is important
to point out that the matrix A is tightly related to the partition sum of three blocks
which are arranged in a line and connected by two magnetic zips, i.e. a N× (3N + 2)
Gaussian rectangle, in the following way: The free energy difference

∆F = − log
|A|−

1
2

∆Z2
1

(III.1.41)

is the energy needed to transform the convex N × (3N + 2) Gaussian rectangle, see
Fig. III.1.4 into the non-convex configuration Fig. III.1.3. From the geometrical stand-
point, the energy ∆F is the energy needed to create one additional convex corner and
one additional concave corner. Since the energy of one convex corner is f 2d

2 /4 the
energy of a concave corner is ∆F− f 2d

2 /4. We denote this energy with f̃ 2d
2

f̃ 2d
2 := 4 ∆F− f 2d

2 = −4 log
|A|−

1
2

∆Z2
1
− f 2d

2 . (III.1.42)

In the remaining part of this section we show that the calculation of the partition
sum of the Gaussian system on a large class of non-convex domains can be reduced
to the calculation of the partition sum of the non-convex building block.

III.1.3. Generalisation to non-convex domains

In this section we apply the zip method to evaluate the partition sum of large class
of non-convex domains. We start out by presenting representative examples of non-
convex domains and reducing the calculation of the corresponding partition sums to
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N

N

N

N

N

N N

N

N

N

F∆

Figure III.1.4.: The energy ∆F, is the energy needed to transform the basic non-
convex building block (right-hand side) into three linearly arranged
Gaussian blocks (left-hand side).

the calculation of the partition sum of the non-convex building block. Afterwards,
we define a large class of non-convex domains, the proper domains: Domains which
scale reasonably in the thermodynamic limit, i.e. all side lengths of the domain are
supposed to grow linearly with the size of the system as the number of spins goes to
infinity in the thermodynamic limit. In this case, the system can be partitioned into
rectangular blocks separated by spin zips. The interaction between the blocks and
the magnetic zips can be boiled down to two different cases (which are discussed in
this section) and the calculation of the partition sum of the system can be reduced to
the calculation of the non-convex building block. Finally, we demonstrate examples
of domains which can not be treated with these methods and point out alternative
routes to access the partition sums of such domains.

III.1.3.1. Examples

Two separated magnetic zips: We consider two spin lines, h1, h2, of length n which
couple to a N × M spin block (M rows, N columns) in an arbitrary way, with the
side condition that the separation between both spin lines grows linearly with the
system size, see Fig. III.1.5. After tracing out the degrees of freedom of the spin
block, only the degrees of freedom of the magnetic lines remain. The partition sum
of the magnetic lines is given by the determinant of a 2× 2 interaction block matrix,
each block being a n× n matrix. In addition to the interaction of a magnetic line with
itself, which is described by the block diagonal, the interaction matrix contains the
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N

M

2h

h1

Figure III.1.5.: A M× N Gaussian spin block – a spin is attached at each lattice site.
Additionally two spin lines, h1 and h2 couple to the spin block on two
opposite sides (the coupling is illustrated by the dotted lines). As a
result, the separation between the magnetic spin lines grows in the
thermodynamic limit.

interaction coefficients between both zips – namely the off-diagonal blocks, which
we denote as ε and εt. Assuming that the numeration of the spins of the spin block
was chosen such that one zip couples to the first spin row and one to the last spin
row, the off-diagonal blocks are of the form

εi,j = −
K2

4
M−1

(1,M)(αi ,β j)
. (III.1.43)

where M is the interaction matrix of the M× N spin block and the index sets

{α1, ..., αn} ⊂ {1, ..., N} and (III.1.44)
{β1, ..., βn} ⊂ {1, ..., N} (III.1.45)

and depend on the exact position of the magnetic zips. Writing out the zip interac-
tion matrix ε, we obtain

εi,j = −
4

(N + 1)(M + 1)

N

∑
l=1

M

∑
k=1

sin2
(

π k
M+1

)
(−1)k+1 sin

(
π αi l

N+1

)
sin
(

π
β j l

N+1

)
1− K cos

(
π k

M+1

)
− K cos

(
π αi l

N+1

) .

(III.1.46)

We split the k-sum into even and odd contributions and apply the Euler-Maclaurin
formula. As a result, it turns out that the entries of the interaction matrix ε vanish
exponentially with the separation length M:

εi,j = O
(

M−k
)

, ∀k ∈N, as M→ ∞. (III.1.47)
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This result allows us to neglect the interactions between two separated magnetic
lines if the separation grows in the thermodynamic limit.

Two concave corners: In the next step, we consider a domain consisting of three
different blocks, separated by two magnetic zips, such that it features two concave
and six convex corners. See the left-hand side of Fig. III.1.6 for a schematic illus-
tration. With the results of the previous example, we know that we can neglect the

N

N

N

N

N

N N

N

N

2N

Figure III.1.6.: Left: three Gaussian spin blocks connected by two magnetic zip lines.
The system features two concave and six convex corners. After trac-
ing out the degrees of freedom of the spin blocks, the interaction be-
tween the magnetic zips can be neglected, since they are separated
by a growing distance. It only remains to calculate the partition sum
of one magnetic zip line between two spin blocks, as depicted on the
right side.

interaction between both magnetic zips, since they a separated by a growing block.
Therefore, after tracing out the three blocks, it only remains to estimate the partition
sum ∆Z of a magnetic line, positioned between two blocks, as depicted on the right-
hand side of Fig. III.1.6. However, this partition sum has already been treated as a
part of the partition sum of the basic non-convex building block, see Sec. III.1.2.2:
Assuming that the magnetic zips are of length N and the three blocks are N×N and
N × 2N, it reads

− log ∆Z = N f 2d
0 − 2(N − 1) f 2d

1 −
3
4

f 2d
2 +

1
4

f̃ 2d
2 . (III.1.48)

Since there are two magnetic zips, ∆Z enters the total partition sum Z quadratically.
We obtain the total partition sum Z of the configuration on the left-hand side of
Fig. III.1.6:

− log Z = 2N(2N + 1) f 2d
0 + 2(5N + 2) f 2d

1 +
3
2

f 2d
2 +

1
2

f̃ 2d
2 . (III.1.49)
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Four concave corners: We consider a system consisting of two N×N blocks and one
N × 3N block, separated by two magnetic zips of length N such that there are eight
convex and four concave corners, see the left-hand side of Fig. III.1.7. The particular
choice of the size of the blocks and magnetic lines is of no importance, the results can
be generalised to arbitrary sizes. Since both magnetic zips are separated by a block

N

N

N

N

N

N

N

N

N

3N

Figure III.1.7.: Left: three Gaussian spin blocks connected by two magnetic zip lines.
The system features four concave and eight convex corners. After
tracing out the degrees of freedom of the spin blocks, the interaction
between both magnetic zips can be neglected, since they are separated
by a growing distance. Therefore, the calculation of the partition sum
goes back to the previous example of a system with two concave cor-
ners, as depicted on the right-hand side.

which grows linearly with the system size, we can trace out the degrees of freedom
of the three blocks and neglect the interaction between both remaining spin lines.
Therefore, it only remains to estimate the partition sum of a spin line between two
blocks, as shown on the right-hand side of Fig. III.1.7. However, this partition sum
is known from the previous example. The total free energy of the system F reads

F = − log Z = N(5N + 2) f 2d
0 + 3(3N + 1) f 2d

1 + 2 f 2d
2 + f̃ 2d

2 . (III.1.50)

Rectangle with a hole: In the last example, we consider the simplest possible lattice
domain with a zero Euler number. The system is depicted on the left-hand side of
Fig. III.1.8 We decide to partition the system into eight blocks and eight magnetic
zips as shown on the left-hand side of Fig. III.1.8. After tracing out the degrees of
freedom of the blocks, the only remaining interactions between the magnetic lines
are the interactions between two spin lines which form a corner (since the interac-
tions between two magnetic lines separated by a block can be neglected), see the
right-hand side of Fig. III.1.8. However, the interaction between two magnetic spin
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Figure III.1.8.: Left: the simplest lattice container featuring a hole. The size of the
hole grows linearly with the system size. The Euler number of the lat-
tice container is zero, see Sec. I.1. After tracing out the degrees of free-
dom of the eight quadratic lattices, the only remaining interactions are
the interactions between two magnetic zips which form a corner, see
the figure on the right-hand side. The partition sum of two zips which
form a corner is part of the partition sum of the non-convex building
block, see Sec. III.1.2.2.

lines forming a corner has been discussed as a part of the basic non-convex build-
ing block. Estimating the total partition sum of the system boils down to counting
concave and convex corners:

− log Z = 8N(N + 1) f 2d
0 + 16(N + 1) f 2d

1 + f 2d
2 + f̃ 2d

2 . (III.1.51)

III.1.3.2. Properly scaling domains

Motivated by these examples we consider the following class of domains D ⊂ Z2:
domains which can be decomposed into blocks D1, ..,Dn, which are connected by
spin zips. All side lengths, holes and distances between magnetic zips are sup-
posed to grow linearly with the system size in the thermodynamic limit. It should
be pointed out that in order to apply the zip method, not the shape of the domain
is important, but how the domain scales in the thermodynamic limit: E.g. consider
a N × N lattice with spins attached to all lattice sites except one lattice site in the
middle – i.e. a rectangular domain with a single hole. One can choose the hole to
grow linearly with the system size as the system grows in the thermodynamic limit,
or alternatively one can choose the hole to keep its size as the system grows and end
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up with an infinite system featuring a single defect. The former case is a “properly
scaling” domain and can be treated with the zip method, being essentially the last
example in Sec. III.1.3.1, while the latter case requires different methods to calculate
the partition sum. In order to put the concept of properly scaling domains in a pre-
cise mathematical formulation, we need some definitions. We start by defining the
convex hull and the projections on the axes: Let D ⊂ Z2 be finite, consisting of |D|
points x1, ..., x|D|. The convex hull Conv(D) is defined as

Conv(D) :=

{
|D|

∑
i=1

αi xi; (∀i : αi > 0) ∧
|D|

∑
i=1

αi = 1

}
. (III.1.52)

Obviously, the convex hull is no longer a subset of Z2. The axis projections of D are
defined in a straight-forward way as

Prx(D) = {x ∈ R; (x, y) ∈ Conv(D)} , (III.1.53)
Pry(D) = {y ∈ R; (x, y) ∈ Conv(D)} . (III.1.54)

A rectangular lattice domain Q ⊂ Z2 with side lengths N1, N2, otherwise called con-
vex domain, is a set which fulfills

Conv(Q) ∩Z2 = Q, (III.1.55)
λ (Prx(Q)) = N1 − 1 > 0,
λ (Prx(Q)) = N2 − 1 > 0,

where λ is the Lebesgue measure on R. In other words, a rectangular lattice domain
is what we intuitively refer to as a convex domain. If a rectangular domain has
horizontal edges consisting of N1 spins, then the length of each of these edges is
N1 − 1. This definition excludes spin lines and single isolated spins from the set
of rectangular lattice domains, as these sets would have at least one edge with the
length zero. A rectangular decomposition r(D) of a domainD is a set {Q1, ...,Qn} , n ∈
N, of rectangular domains, such that

n⋃
i=1

Qi = D. (III.1.56)

We call a domainD proper, if a rectangular decompositionQ1, ...,Qn exists, such that

Qi ∩Qj > 0⇒ Qi ∩Qj > 1. (III.1.57)

This side condition is needed to exclude domains which consist of two rectangular
blocks overlapping only at the corner lattice site: While it is possible to calculate the
free energy of the Gaussian system on such domains, they do not scale properly in
the thermodynamic limit (the overlap will only be one lattice site, no matter how the
system is scaled) and the underlying calculations can not be reduced to the partition
sum of the non-convex building block. Given a proper domain D, we can consider
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the set R of rectangular decompositions of D. R is finite, since D is a finite set. Now
we can define the scaled domain nD for any n ∈N:

nD :=

(⋃
r∈R

⋃
Qi∈r

nConv (Qi)

)⋂
Z2, where (III.1.58)

nM := {nx; x ∈ M} , for any M ⊂ R2 is the scaled set. (III.1.59)

The basic idea is to decompose the underlying domain into rectangular blocks, re-
scale the rectangular blocks as subsets of R2 and then project the scaled set on the
lattice Z2. Now, a properly scaling lattice domain is any domain which can be ob-
tained by scaling a proper domain. On the other hand, starting with a proper do-
mainD, one can achieve the thermodynamic limit by considering the scaled domain
nD and then letting n go to infinity. For large system sizes, a properly scaling do-
main can be decomposed into rectangular blocks connected by single spin zip lines
similar to the examples in Sec. III.1.3.1. As the system grows to infinity, the zips are
either separated by a growing distance, and thus the interaction between them can
be neglected, or the zips are positioned similar to the zips of the non-convex building
block, see Sec. III.1.2.2. After tracing out the degrees of freedom of the rectangular
blocks, only the degrees of freedom of the magnetic zips remain. The partition sum
of the magnetic zips can now be reduced to one of the examples in Sec. III.1.3.1.

Summary:

Summarising, one can say that the zip method allows to calculate the partition sum
of an arbitrarily shaped properly scaling two-dimensional Gaussian system, once
the partition sum of the non-convex building block is known. The total free energy
can be calculated in an easy way by counting volume, surface and corner lattice sites
and weighting them as following:

• Each lattice site multiplicatively contributes with the factor exp
(
− f 2d

0
)

to the
partition sum.

• Additionally, each lattice side which belongs to the surface of the system – i.e.
has exactly three neighbouring spins – contributes with the factor exp

(
− f 2d

1

)
to the partition sum.

• Additionally, each lattice site which forms a convex corner – i.e. has only two
neighbouring spins – contributes with the factor exp

(
− f 2d

2 /4− 2 f 2d
1

)
to the

partition sum.

• Additionally, each lattice site which forms a concave corner contributes with
the factor exp

(
− f̃ 2d

2 /4
)

to the partition sum.

All additional contributions to the free energy decay exponentially with the system
size in the thermodynamic limit. One should note that in order to be able to deter-
mine the partition sum in this simple geometric way, we have to restrict ourselves to
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properly scaling container geometries, as defined in this section. In the next section,
we give some examples of container geometries with partition sums, which can not
be calculated as easily and present alternative methods to estimate these partition
sums.

III.1.3.3. Non-properly scaling domains

In the previous section the partition sum of the Gaussian system on any properly
scaling domain was calculated – i.e. domains whose edge lengths and holes grow
with the system size in the thermodynamic limit. While this covers a large class of
relevant domains there are other domains which can be interesting from the physical
point of view, e.g. domains with single hole or line defects. In this section we present
several examples of Gaussian spin systems on lattice containers which do not meet
the requirement of being properly scaling in the thermodynamic limit: The partition
sums of these systems can not be estimated in the simple way presented in this
section, i.e. by counting volume, surface and corner spins. However, it turns out
that it is possible to estimate some of these partition sums on a case-by-case basis
using the methods developed here.

Single hole in a toroidal system

We start by considering a N×M Gaussian stripe with toroidal boundary conditions
and a single hole defect which does not grow with the system size in the thermo-
dynamic limit. Since the original system is translational invariant, the position of
the hole does not affect the partition sum. We divide the system in M spin rows,
each row consisting of N spins and choose the hole to be at the first lattice site of the
first row. We can calculate the partition sum using the method of freezing spins, see
Sec. III.1.1. The partition sum reads:

Z =
1√

det(−M)det(−M−1
I )

= Z2d
t

1√
det(−M−1

I )
. (III.1.60)

Here, M ≡ M2d
t is the interaction matrix of the original system without defects, see

Sec. II.2.2.1, I = {1} the index set and M−1
I the 1× 1 upper left submatrix of M−1,

according to Sec. III.1.1. Z2d
t is the partition sum of the N×M toroidal system. Using

the properties derived in Sec. A.2 and the Euler-Maclaurin summation formula, see
Sec. A.4, we can calculate M−1

I in the limit M, N → ∞:

M−1
I = − 1

π

∫ π

0
dϕ

1√
(1− K cos ϕ)2 − K2

. (III.1.61)

We define the bulk defect energy B as

B(K) :=
1
2

log
∣∣∣M−1

I

∣∣∣ = 1
2

log
1
π

∫ π

0
dϕ

1√
(1− K cos ϕ)2 − K2

. (III.1.62)
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The free energy reads

βF = βF2d
t + B. (III.1.63)

Here βF2d
t is the free energy of the original system without defects. The energy B(K)

of a single hole defect in the bulk of the system as a function of the coupling K is
plotted in Fig. III.1.9.
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Figure III.1.9.: Left: the energy of a single hole defect as a function of the spin-spin
coupling K. Solid line: B(K), i.e. the hole defect is in the bulk, see
Eq. (III.1.62). Dash-dotted line: S1(K), i.e. the hole defect is at the
boundary of the system and far away from the corners of the sys-
tem. Dashed line: S2(K), i.e. the hole defect is one lattice site away
from the boundary of the system and far away from the corners, see
Eq. (III.1.72). Right: the energy of a single hole defect as a function of
K. Solid line: B(K), i.e. the hole defect is in the bulk, see Eq. (III.1.62).
Dash-dotted line: C1,1(K), i.e. the hole defect is at the corner site.
Dashed line: C2,2(K), i.e. the hole defect is one lattice site away in
each direction from the corner lattice site, see Eq. (III.1.65).

Single hole in a system with free boundaries

As our next example of non-properly scaling domains, we consider a N ×M Gaus-
sian stripe with free boundary conditions and a single hole which does not grow
with the system size. In contrast to the toroidal boundary conditions this system
is not translational invariant. Thus, the partition sum depends on the exact posi-
tion of the defect. We choose the defect to be on the n-th lattice site of the m-th
row and consider three cases: We start with m, n constant, not growing with the
system size in the thermodynamic limit, i.e. m, n � M, N. This case corresponds
to the defect being close to one of the corners of the system. The second case is
m = (M − 1)/2, N = (N − 1)/2 with M, N odd. This choice corresponds to the
defect in the bulk of the system, with the distance to the boundary growing with the
system size. Finally, we consider n = (N − 1)/2, m constant, with N odd. This case
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corresponds to the defect being close to the boundary of the system, but far away
from the corners. In analogy to the previous example, the partition sum reads

Z = Z2d
f

1√
det

(
M−1

I

) . (III.1.64)

M ≡ M2d
f is the interaction matrix of the Gaussian system with free boundary condi-

tions, see Sec. II.2.2.4, and M−1
I is a diagonal entry of M−1. From Sec. A.2, we know

the entries of M−1:

M−1
(i,j)(m,n) =

4
(N + 1)(M + 1)

M

∑
k=1

N

∑
l=1

sin i k π
M+1 sin j k π

M+1 sin m l π
N+1 sin n l π

N+1

−1 + K cos k π
M+1 + K cos l π

N+1
.

We start with the hole close to one of the corners.
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Figure III.1.10.: The energy of a single hole defect as a function of the distance n
from the boundary. n = 1 means the hole defect is positioned
at the boundary – either at the surface (left plot) or at the corner
(right plot). The horizontal lines are the values B(K) of the en-
ergy of a single hole defect in the bulk of the system at coupling
strengths K ∈ {0.2, 0.495}. Left: the energy Sn of a hole defect
close to the surface of the system but far away from the corners
as a function of the distance n for values of the spin-spin coupling
K ∈ {0.2, 0.495}, see Eq. (III.1.72). Right: the energy Cn,n of a hole de-
fect close to the corner of the system for values of the spin-spin cou-
pling K ∈ {0.2, 0.495}, see Eq. (III.1.65). For any non-critical values
of K, both Sn(K) and Cn,n(K) quickly converge to the energy B(K) of
a single hole defect in the bulk of the system as the distance n grows.

Defect close to a corner: We choose the defect to be on the n-the lattice site of the
m-th row and keep m, n constant. Thus I = (m − 1)N + n. Since M−1 is a block
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matrix we have to calculate the n-th diagonal entry of the m-th diagonal block:

M−1
I = M−1

(m,m)(n,n) =
4

(N + 1)(M + 1)

M

∑
k=1

N

∑
l=1

sin2 m k π
M+1 sin2 n l π

N+1

−1 + K cos k π
M+1 + K cos l π

N+1
.

We consider the thermodynamic limit M, N → ∞ and apply the Euler-Maclaurin
formula:

M−1
I =

4
π2

∫ π

0
dϕ

∫ π

0
dΘ

sin2 mϕ sin2 nΘ
−1 + K cos ϕ + K cos Θ

.

We define the corner defect free energy Cn,m:

Cn,m(K) :=
1
2

log
∣∣∣M−1

I

∣∣∣ = 1
2

log
4

π2

∫ π

0
dϕ

∫ π

0
dΘ

sin2 mϕ sin2 nΘ
1− K cos ϕ− K cos Θ

. (III.1.65)

Performing the Fourier decomposition of sin2 yields

M−1
I =

1
π2

∫ π

0
dϕ

∫ π

0
dΘ

1
−1 + K cos ϕ + K cos Θ

+
1

π2

∫ π

0
dϕ

∫ π

0
dΘ

cos 2mϕ cos 2nΘ
−1 + K cos ϕ + K cos Θ

− 1
π2

∫ π

0
dϕ

∫ π

0
dΘ

cos 2mϕ + cos 2nΘ
−1 + K cos ϕ + K cos Θ

. (III.1.66)

Finally, we can carry out one of the integrations:

M−1
I =− 1

π

∫ π

0
dϕ

1√
(1− K cos ϕ)2 − K2

+
1

π2

∫ π

0
dϕ

∫ π

0
dΘ

cos 2mϕ cos 2nΘ
−1 + K cos ϕ + K cos Θ

+ ∑
k∈{m,n}

1
π

∫ π

0
dϕ

cos 2kϕ√
(1− K cos ϕ)2 − K2

. (III.1.67)

As expected, the first term corresponds to the contribution of a single hole defect to
the partition sum of the toroidal system. The second and the third terms are m, n-th
Fourier modes of rational expressions of the cos function and describe the correlation
of the hole defect with the boundary of the lattice domain. They vanish in the limit
m, n → ∞, i.e. when the hole defect is moved to the bulk of the system. The free
energy βF reads

βF = βF2d
f + Cn,m(K)

βF2d
f is the free energy of the N ×M Gaussian stripe with free boundary conditions

and no defect. The corner defect energy Cn,n is plotted as a function of the coupling
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strength K in Fig. III.1.9 and as a function of the distance n from the corner lattice
site in Fig. III.1.10.

Defect in the bulk of the system: In the next example, we consider M, N odd and
m = (M− 1)/2, N = (N − 1)/2. This choice corresponds to a single hole defect in
the bulk of the system. The matrix entry M−1

I reads

M−1
I =

4
(N + 1)(M + 1)

M

∑
k=1

N

∑
l=1

sin2 k π
2 sin2 l π

2
−1 + K cos k π

M+1 + K cos l π
N+1

. (III.1.68)

In both the k- and the l-sum we consider only odd k, l, since the even contributions
vanish due to sin2 terms. Applying the Euler-Maclaurin integration formula for
large M, N results in

M−1
I = − 1

π

∫ π

0
dϕ

1√
(1− K cos ϕ)2 − K2

. (III.1.69)

The free energy reads

βF = βF2d
f +

1
2

log
1
π

∫ π

0
dϕ

1√
(1− K cos ϕ)2 − K2

. (III.1.70)

Here, βF2d
f is the free energy of the original system without defects. As expected,

the contribution of the hole defect to the free energy is the same for toroidal and free
boundary conditions if the hole defect is positioned in the bulk of the system with a
growing distance to the boundary of the container.

Defect close to the boundary, but far away from the corners: In the last example
we consider the case m = (M − 1)/2 and n constant. This describes a hole defect
close to the boundary of the container but with a growing distance from the corners
of the system. We can either explicitly calculate the partition sum or obtain it from
the first case in this example by letting m→ ∞:

M−1
I = lim

m→∞

[
− 1

π

∫ π

0
dϕ

1√
(1− K cos ϕ)2 − K2

+
1

π2

∫ π

0
dϕ

∫ π

0
dΘ

cos 2mϕ cos 2nΘ
−1 + K cos ϕ + K cos Θ

+ ∑
k∈{m,n}

1
π

∫ π

0
dϕ

cos 2kϕ√
(1− K cos ϕ)2 − K2

]

=− 1
π

∫ π

0
dϕ

1√
(1− K cos ϕ)2 − K2

+
1
π

∫ π

0
dϕ

cos 2nϕ√
(1− K cos ϕ)2 − K2

. (III.1.71)
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The surface defect free energy Sn is defined as

Sn(K) :=
1
2

log
1
π

∫ π

0
dϕ

1− cos 2nϕ√
(1− K cos ϕ)2 − K2

, (III.1.72)

And the free energy reads

βF = βF2d
f + Sn.

In addition to the hole energy of a single hole in the middle of the container there is a
energy contribution which describes the correlation of the hole with the boundary of
the container. The surface defect free energy is plotted as a function of the coupling
K in Fig. III.1.9 and as a function of the distance n from the boundary in Fig. III.1.10.

Further examples

In general, non-properly scaling lattice domains are domains with features which
do not scale with the system size in the thermodynamic limit. It can be single holes
(like the domains discussed in the previous examples), combinations of single holes
with varying distance between the holes, line defects, where the defect grows lin-
early in one dimension, but has a constant length in the other dimension. Treating
the corresponding partition sums turns out to be complicated, but can be done in
some cases on a case-by-case basis with the methods presented in this section. For
properly scaling containers, see Sec. III.1.3, we decomposed the lattice domain in
growing rectangular blocks separated by growing magnetic zip lines where the in-
teraction between the zip lines either vanished due to the growing distance between
the zips or it could be reduced to the interaction of the zip lines in the non-convex
building block, Sec. III.1.2.2. This can not be done in the case of non-properly scaling
domains. Very often the calculation of the partition sum of the Gaussian model on
such domains boils down to the calculation of the determinant of a submatrix of the
inverse of the original interaction matrix of the system without defects. However, in
some cases it can be more convenient to apply the zip method or an alternative nu-
meration of the lattice sites. In this section, we give some examples of non-properly
scaling domains.

Rectangles connected by zip lines: A simple example of non-properly scaling do-
mains is the system consisting of two rectangular blocks connected by a single spin
line. For the sake of simplicity we choose two N × N spin lattices connected by a
spin line of the length N, see Fig. III.1.11. Alternatively, the spin line can connect to
the corners of the rectangular blocks or to any of the boundary spins of the blocks.
One can also add additional spin blocks and connect them by spin lines in a similar
way. As N → ∞ in the thermodynamic limit, the size of the spin blocks grows and
the connecting spin lines become longer. However, the width of the spin lines stays
constant equal 1, making such lattice domains non-properly scaling. The partition
sum of such systems can be easily calculated by interpreting the boundary spins of
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Figure III.1.11.: A lattice container consisting of two rectangular N × N blocks con-
nected by a spin line of length N. The lattice sites in the shaded areas
can be treated as magnetic zips, dividing the system in three simple
subsystems.

the spin line (shaded spins in Fig. III.1.11) as magnetic zips, see Sec. III.1.2. The two
magnetic zips divide the system in two N×N blocks and a spin line of length N− 2.
After tracing out the degrees of freedom of these subsystems only a two-dimensional
integral remains which describes the contribution of the zips to the partition sum. It
should be pointed out that the interaction between the zips decays exponentially
with the system size since they are separated by a growing distance. The interaction
constant of a magnetic zip with itself is given by corresponding diagonal entries of
the inverse interaction matrices of the N × N block or the spin line of length N − 2
with free boundary conditions.

Shifted rows: Another example of non-properly scaling lattice containers is a system
consisting of N spin rows, M spins each, where each row is shifted by one lattice
site relative to the previous row, see left side of Fig. III.1.12. We choose to connect
the top and bottom row by periodic boundary conditions. Both zig-zag edges are
subject to free boundary conditions. Alternatively, one can choose the shift length to
be any integer. Each choice of the shift length would have to be treated separately.
The system is similar to a rectangular domain. One should point out that the zig-zag
edges prevent the application of the zip method and are the only feature of this lattice
domain which makes it non-properly scaling. Instead of applying the zip method or
interpret the zig-zag boundary as defects, it seems more appealing to calculate the
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Figure III.1.12.: Left: N rows, each row consisting of M lattice sites. Each row is
shifted by one lattice site relative to the previous row. Bottom and
top rows interact with each other. Left and right edges of the sys-
tem are subject to free boundary conditions. Right: regular surface
coefficient f 2d

1 , see Sec. II.2.2.5 (solid line) and the surface coefficient
of the zig-zag boundary (dash-dotted line), see the second term in
Eq. (III.1.79).

eigenvalues and the determinant of the interaction matrix M:

M =



M1d
f ∆M 0 · · · 0 0 ∆Mt

∆Mt M1d
f ∆M · · · 0 0 0

...
. . .

...

0 0 0 · · · ∆Mt M1d
f ∆M

∆M 0 0 · · · 0 ∆Mt M1d
f


. (III.1.73)

The matrix M1d
f on the main diagonal is the interaction matrix of the Gaussian chain

with free boundary conditions and describes the interaction of the spins within each
row, see Sec. II.2.1. The off diagonal blocks ∆M read

∆M =



0 K
2 0 · · · 0 0 0

0 0 K
2 · · · 0 0 0

...
. . .

...

0 0 0 · · · 0 0 K
2

0 0 0 · · · 0 0 0


(III.1.74)

The matrix M is a block circulant. Thus, we can apply the same ansatz for the
eigenvectors as in the two-dimensional case with toroidal boundary conditions, see
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Sec. A.2. The equation system for NM eigenvalues λn,m is reduced to an equation
system for M eigenvalues:(

M1d
f + ∆Mzn + ∆Mtz−1

n

)
Ψ = λnmΨ. (III.1.75)

Here, zn = exp i 2π n/N is the n-th complex root of 1. However the determinant
of this matrix obeys the same recurrence relation as the determinant of M1d

f with
slightly modified matrix entries. As a result, we obtain the eigenvalues λn,m of the
interaction matrix M:

λn,m = −1 + K cos Θm
√

2 + 2 cos ϕn, (III.1.76)

Θm = π
m

M + 1
, m = 1, ..., M, (III.1.77)

ϕn = 2π
n
N

, n = 1, ..., N. (III.1.78)

Applying Euler-Maclaurin summation formula for N, M→ ∞ and omitting all con-
tributions which decay exponentially with the system size, we obtain the free energy
βF:

βF =
NM
2π

∫ π

0
dϕ log

1 +
√

1− 2K2(1 + cos ϕ)

2

+
N
2π

∫ π

0
dϕ log

1 +
√

1− 2K2(1 + cos ϕ)

2
√

1− 2K2(1 + cos ϕ)
. (III.1.79)

We compare this result to the free energy of the Gaussian system on a rectangular
domain with cylindric boundary conditions, see Eq. (II.2.81). One can verify numer-
ically that the volume contributions are equal, as one would expect. On the other
hand, the contributions to the free energy proportional to N only, i.e. the surface
contributions, are different: The zig-zag boundary has a higher energetic contribu-
tion than the straight boundary, see the right side of Fig. III.1.12.

Rectangles overlapping in one lattice site: Another example of non-properly scal-
ing domains is a lattice domain consisting of two rectangular blocks which overlap
only in one lattice site. In Fig. III.1.13, the system consists of two N × N blocks.
As N → ∞ in the thermodynamic limit, both blocks grow, but the overlap remains
only one site, making this lattice domain non-properly scaling. The partition sum of
this system is difficult to calculate with the methods developed and demonstrated
throughout this thesis.
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Figure III.1.13.: A lattice domain consisting of two rectangular N×N blocks overlap-
ping in one lattice site. As the system grows in the thermodynamic
limit the size of the overlap remains constant.
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III.2. Evaluation of the non-convex
building block

In this section we estimate the partition sum of the main non-convex building block,
as introduced in Eq. (III.1.42) of Sec. III.1.2.2 and illustrated in Fig. III.2.1. As shown
in Sec. III.1.3, this partition sum allows us to calculate the partition sum of the Gaus-
sian model on an arbitrary properly scaling lattice container. We show analytically
that the logarithm of the partition sum of the non-convex building block can not
be written as a linear combination of f 2d

0 , f 2d
1 , f 2d

2 . Therefore, the contribution of the
concave corner f̃ 2d

2 is genuinely different from the other geometric contributions and
the free energy can not be written as a linear combination of Minkowski function-
als, see Sec. I.1. Finally we evaluate the partition sum of the non-convex building
block numerically. The system is partitioned such that it consists of three blocks and
two spin zips which form a corner. We trace out the degrees of freedom of the three
N × N blocks, which yields the partition sums Z1 = Z2 = Z3, i.e. the partition sum
of a N × N rectangle with free boundary conditions. The total partition sum Z can
then be written as a partition sum of both magnetic zips h1, h2:

Z = Z3
1π−N

∫
dNh1

∫
dNh2 exp

(
ht Ah

)
, (III.2.1)

where the total magnetic field h and the interaction matrix A read

h = (h1, h2)
t ∈ R2N , (III.2.2)

A =

[
Mf − K2

2 M−1
I ∆M

∆M Mf − K2

2 M−1
I

]
. (III.2.3)

The matrices M−1
I , ∆M are N× N submatrices of the inverse M−1 of the interaction

matrix of the two-dimensional Gaussian block. The index set I = {1, ..., N} indicates
that M−1

I is the submatrix of M−1 obtained by erasing all rows and columns except
{1, ..., N}. The matrix ∆M is given by

(∆M)i,j = −
K2

4
M−1

(1,i)(j,1). (III.2.4)

M−1 is a block matrix, the first pair of indices numerates the blocks, the second pair
of indices numerates the entries in the block. Obviously, the matrix ∆M is responsi-
ble for the interaction between both magnetic fields h1, h2. The goal is to estimate
the determinant of A.
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1

1

Z∆

2 3

1

Figure III.2.1.: Basic non-convex domain configuration. The partition sums Z1, Z2,
Z3 are the partition sums of the N× N Gaussian blocks without mag-
netic field. The partition sum ∆Z1 refers to the partition sum of a spin
line between two blocks (the degrees of freedom of the blocks already
traced out) and has been discussed in Sec. III.1.2.1. The partition sum
∆Z2 corresponds to the interaction between both magnetic fields.

III.2.1. Orthonormal transformation

In order to evaluate the integral Eq. (III.2.1), we apply the orthonormal transforma-
tion T on the vector h:

T =
1√
2

[
1N 1N
−1N 1N

]
. (III.2.5)

It is det T = 1. The interaction matrix A transforms as follows:

Tt AT =

[
Mf − K2

2 M−1
I − ∆M 0

0 Mf − K2

2 M−1
I + ∆M

]
. (III.2.6)

Therefore, the remaining task is to evaluate the determinant of the matrices

A± := Mf −
K2

2
M−1

I ± ∆M, (III.2.7)

det A = det A+ det A−. (III.2.8)
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III.2.2. Discrete sine transform

III.2.2. Discrete sine transform

Applying the matrix of the discrete sine transform F,

Fi,j :=

√
2

N + 1
sin
(

i j
π

N + 1

)
, (III.2.9)

on the interaction matrices −K2

2 M−1
I + Mf ± ∆M yields(

Ft A±F
)

m,n =

− δm,n

√
(1− K cos Θm)2 − K2 ± K2

2(N + 1)
sin Θm sin Θn

1 + K cos Θm + K cos Θn
. (III.2.10)

In the next step we factorise the matrices A± as following:

Ft A±F =

[
Ft
(

Mf −
K2

2
M−1

I

)
F
]

B±, with the matrices B± :

B± =

[
Ft
(

Mf −
K2

2
M−1

I

)
F
]−1

Ft A±F. (III.2.11)

The entries of B± read

(B±)m,n = δm,n ∓
K2

2(N + 1)
sin Θm sin Θn

(1 + K cos Θm + K cos Θn)
√
(1− K cos Θm)2 − K2

.

(III.2.12)

We keep in mind that our goal is to calculate the determinant of A:

det A = det
(

Mf −
K2

2
M−1

I

)2

det B+B−, (III.2.13)

∆F = − log det B+B−. (III.2.14)

From the geometrical point of view, the determinant det B+B− corresponds to the
free energy difference ∆F needed to transform three N × N block connected by two
magnetic zips and aligned linearly to the basic non-convex block configuration, see
Sec. III.1.2.2 for details. In other words, ∆F is the energy need to create one convex
and one concave corner, see Fig. III.2.2.

III.2.3. Vanishing spin-spin coupling

In the next step we consider the energy ∆F = − log det B+B− at vanishing spin-spin
coupling K. We perform a series expansion of ∆F in K around K = 0 and show that
∆ is not a linear combination of f 2d

0 , f 2d
1 , f 2d

2 . In this section, we consider ∆F(K, N)
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N

N

N

N

N

N N

N

N

N

F∆

Figure III.2.2.: The energy ∆F is the energy needed to transform three linearly ar-
ranged Gaussian blocks (left-hand side) into the basic convex building
block (right-hand side).

as a function of the coupling strength K and the length N of the magnetic zips. From
the definition Eq. (III.2.12), we immediately obtain

∆F(0, N) = 0. (III.2.15)

In the next step, we carry out the series expansion of the matrix B± in powers of K up
to order K8 and apply the discrete sine transformation Eq. (III.2.9) on the resulting
matrix. The calculation can be performed by hand or using a Mathematica script. It
turns out that the resulting matrix is a block diagonal matrix with an upper left 8× 8
block matrix and a lower right (N − 8)× (N − 8) identity matrix, all other entries
being zero. Evaluating the determinant yields

∆F(K, N) = −K4

16
− K6

4
− 463

512
K8 +O

(
K10
)

. (III.2.16)

One should note that the result does not depend on N. The coefficients f0, f1, f2 are
known from Sec. II.2.2, the power series expansion is straight-forward:

f0 = −1
4

K2 − 9
32

K4 − 25
48

K6 − 1225
1024

K8 +O
(

K10
)

,

f1 =
1
16

K2 +
17
128

K4 +
131
384

K6 +
3985
4096

K8 +O
(

K10
)

,

f2 = − 3
16

K4 − 25
32

K6 − 1491
512

K8 +O
(

K10
)

. (III.2.17)
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If we assume that ∆F is a linear combination of f0, f1, f2, the equation

∆F = x f0 + y f1 + z f2. (III.2.18)

has to hold for any power of K. It can be easily verified that this equation has no
solution (x, y, z). Therefore, the free energy ∆F is not a linear combination of
f 2d
0 , f 2d

1 , f 2d
2 .

III.2.4. Numerical evaluation

In this section we present and discuss the results of the numerical evaluation of ∆F.
The determinants of the matrices B±, see Eq. (III.2.12), have been evaluated numer-
ically using the np.linalg package of Python. The main results have been obtained
for N = 2 · 104, where N is the length of the magnetic zip and the matrices B± are
N × N. Furthermore, we checked the dependence of the results on the system size.
The energy ∆F as a function of coupling strength can be seen on the left-hand side of
Fig. III.2.3 On the right-hand side of Fig. III.2.3, one can see the energy ∆F for values
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Figure III.2.3.: Left: the energy ∆F as a function of the coupling strength K. The size
of the magnetic zips is N = 2 · 104, see Eq. (III.2.14). ∆F is symmetric
in K and diverges for K → ±1/2. Right: the energy ∆F (N = 2× 104)
as a function of log δK = log(1/2−K). The range of values of the cou-
pling is δK ∈ [10−8...10−4]. Additionally, a linear function a log δK + b
is fitted to the data.

of K close to the critical coupling K = 0.5 in a logarithmic plot. Additionally, a linear
function a log δK + b is fitted to the plot, the fitting parameters read

f (x) = a log δK + b,

a = 2, 77× 10−2 ± 2× 10−5,

b = 1, 04× 10−1 ± 4× 10−4. (III.2.19)

91



III.2. Evaluation of the non-convex building block

The energy difference ∆F diverges logarithmically for K → ±0.5 within the numer-
ical precision of the data. In Fig. III.2.4 one can see the contribution f̃2 = 4∆F − f2
of four concave corners compared with the contribution f2 of four convex corners.
In the final step, we analyse the dependence of the results on the system size N.
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Figure III.2.4.: The contribution f̃2 = 4∆F− f2 of four concave corners and the contri-
bution f2 of four convex corners to the free energy as a function of the
coupling K. Both functions are symmetric around K = 0 and have the
opposite sign. Both functions diverge logarithmically as K → ±0.5.

In Fig. III.2.5 one can see the relative error of ∆F(K, N) and ∆F(K, 104) for different
values of K. One can safely assume that the precision of the numerical evaluation is
high enough for N = 104.
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Figure III.2.5.: The relative error between ∆F(K, N) and ∆F(K, 104). Left: low cou-
pling, K ∈ {0.3, 0.4}. Right: K close to the critical coupling, K ∈
{0.49, 0.499}. In all four cases, the precision at N = 104 is sufficiently
high.
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III.3. Summary

The methods developed in this section allow the calculation of the partition sum
and the free energy of the Gaussian model on any properly scaling lattice domain
with free boundary conditions. Roughly speaking a properly scaling lattice domain
is a lattice domain whose edges and holes grow linearly with the system size in the
thermodynamic limit, see Sec. III.1.3 for a precise definition. For properly scaling
domains the partition sum can be evaluated by counting different types of lattice
sites and assigning weights to them:

• Each lattice site multiplicatively contributes with the factor exp
(
− f 2d

0
)

to the
partition sum.

• Additionally, each lattice site which belongs to the surface of the system – i.e.
has three neighbouring spins – contributes with the factor exp

(
− f 2d

1

)
to the

partition sum.

• Additionally, each lattice site which forms a convex corner – i.e. has only two
neighbouring spins – contributes with the factor exp

(
− f 2d

2 /4− 2 f 2d
1

)
to the

partition sum.

• Additionally, each lattice site which forms a concave corner contributes with
the factor exp

(
− f̃ 2d

2 /4
)

to the partition sum.

Any additional contributions to the free energy beyond these contributions decay
exponentially with the system size in the thermodynamic limit. One should point
out that this result allows a simple geometric interpretation of the free energy: The
free energy is a linear combination of the volume, the surface area, the number of
convex corners and the number of concave corners of the lattice domain, with the
coefficients of the linear combination being f0, f1, f2, f̃2. All coefficients are inde-
pendent of the lattice geometry. All coefficients except the concave corner coefficient
f̃2 have been calculated analytically in Sec. II.2.2. The coefficient f̃2 has been evalu-
ated numerically in Sec. III.2.4. One important property of this coefficient is that f̃2
can not be written as a linear combination of f0, f1, f2, see Sec. III.2.3 for details.
According to Sec. I.1, this means that the free energy, in general, can not be writ-
ten as a linear combination of the volume, the surface area and the Euler number of
the underlying lattice domain. Consequently the decomposition Eq. (I.0.4) has to be
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III.3. Summary

modified to

Ω(λD) = |D| λ2 f0 + |∂D| λ f1 +
#(conv. corners)(D)

4
f2 (III.3.1)

+
#(conc. corners)(D)

4
f̃2 +O

(
e−tλ

)
, as λ→ ∞.

Once again |D|, |∂D| are the volume and the surface area of the underlying lattice
domain. Expectedly, the calculation of the partition sum of the two-dimensional
Gaussian model on arbitrary, i.e. not necessarily properly scaling domains, requires
additional methods. Chap. III.1 presents some techniques which allow the calcula-
tion of such partition sums on a case-by-case method. Some examples are presented
in Sec. III.1.3.3.

Motivated by these results, we formulate a conjecture for the free energy of the Gaus-
sian model on arbitrary, properly scaling lattice domains in higher dimensions. In
three dimensions we expect the free energy to be a linear combination of seven con-
tributions (and otherwise only exponentially decaying terms): the volume contribu-
tion, the surface contribution, two different edge contributions which correspond to
concave and convex edges and three different corner contributions. We expect dif-
ferent, linearly independent corner contributions from the three different possible
types of corners: convex corners, i.e. the corners of a cuboid domain, concave cor-
ners, i.e. corners which are formed by a cavity inside a cuboid domain, and “saddle-
type” corners, i.e. the inner corners of a L-shaped domain. We expect the respective
coefficients fi to be linearly independent. The thermodynamic coefficients fi which
correspond to the volume, the surface, the convex edge and the convex corner con-
tributions have been calculated in Sec. II.2.3. Accordingly, in higher dimensions we
expect linearly independent contributions from different geometric features of the
domain: the volume, the surface area, the edges, the corners, etc.
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Part IV.

Extensions of the basic model





In this part, we discuss two possible generalisations of the Gaussian model of
ferro-magnetism: We start by considering the two-dimensional Gaussian model on
the triangular and the hexagonal lattice instead of the Z2 and evaluate the corre-
sponding partition sums. Furthermore, we extend the spin-spin interactions of the
Gaussian model beyond the next-neighbour interactions: We discuss the impact of
general spin-spin interactions on the partition sum of the one-dimensional Gaus-
sian model and examine the corresponding convergence behaviour. We evaluate the
partition sum of the one-dimensional Gaussian model with next-nearest-neighbour,
quadratically and exponentially decaying interactions and the two-dimensional model
with exponentially decaying interactions.

99





IV.1. Alternative lattices

In this section, we study the two-dimensional Gaussian model on the triangular and
the hexagonal lattices. We evaluate the volume and the surface contributions of both
lattice types. Additionally, we evaluate the corner contribution to the free energy of
the Gaussian model on the hexagonal lattice.

IV.1.1. Triangular lattice

We start with the Gaussian model on a triangular lattice: Consider a M× N lattice
domain with free boundary conditions. The lattice domain is subdivided in N rows,
M spins each, subject to free boundary conditions, see Fig. IV.1.1. The interaction
matrix MN reads:

MN =



M1d
f M12 0 · · · 0 0 0

Mt
12 M1d

f M12 · · · 0 0 0

...
. . .

...

0 0 0 · · · Mt
12 M1d

f M12
0 0 0 · · · 0 Mt

12 M1d
f


. (IV.1.1)

M1d
f is the interaction matrix of the one-dimensional spin chain with free boundary

conditions. It describes the spin interactions within a row. M12 characterises the
interaction between two neighbour rows and has the form:

M12 =
K
2



1 0 0 · · · 0 0 0
1 1 0 · · · 0 0 0

...
. . .

...

0 0 0 · · · 1 1 0
0 0 0 · · · 0 1 1


. (IV.1.2)

The aim is to calculate the determinant of MN .
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M

Figure IV.1.1.: A M× N triangular lattice. The black dots correspond to spins. Every
two neighbour spins connected by a line interact with each other. For
the enumeration, we group the spins in N rows, each consisting of M
spins.
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Figure IV.1.2.: Left figure: volume coefficient f0 as a function of the coupling K. Right
figure: surface coefficient f1, see Eq. (IV.1.11) for both coefficients.
Similar to the case of a rectangular lattice, both coefficients f0, f1 re-
main finite for K ∈ [−1/3, 2/3].
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Calculating the determinant |MN |

In order to calculate the determinant we apply the Widom-Szegö theorem for block
Toeplitz matrices, see [24]: The matrix valued symbol ΦM(x) reads

ΦM(x) = M1d
f + M12 e−i x + Mt

12 ei x

=



1 + K cos x K
2

(
1 + e−i x) · · · 0 0

K
2

(
1 + ei x) 1 + K cos x · · · 0 0

...
. . .

...

0 0 · · · 1 + K cos x K
2

(
1 + e−i x)

0 0 · · · K
2

(
1 + ei x) 1 + K cos x


. (IV.1.3)

The Szegö theorem allows us to determine the leading contribution to det MN :

lim
N→∞

1
N

log |−MN | = G(Φ) =
1

2π

∫ 2π

0
dx log |det ΦM(x)| . (IV.1.4)

Therefore, the remaining task is to calculate the determinant of ΦM(x). We apply the
Laplace expansion on the first row

det ΦM(x) = (1 + K cos x)det ΦM−1(x)− K2

2
(1 + cos x)det ΦM−2(x), (IV.1.5)

det Φ1(x) = 1 + K cos x, (IV.1.6)

det Φ2(x) = (1 + K cos x)2 − K2

2
(1 + cos x). (IV.1.7)

This is the recursion which defines the determinant of the one-dimensional Gaussian
chain with free boundaries, see Sec. II.2.1.2. We can calculate this determinant up to
exponentially decaying terms:

log |det ΦM(x)| = M + 1
2π

∫ 2π

0
dy log

(
1 + K cos x + K

√
2
√

1 + cos x cos y
)

− 1
2

log
[
(1 + K cos x)2 − 2 K2 (1 + cos x)

]
= M log

1 + K cos x +
√
(1 + K cos x)2 − 2K2(1 + cos x)

2

+ log
1 + K cos x +

√
(1 + K cos x)2 − 2K2(1 + cos x)

2
√
(1 + K cos x)2 − 2K2(1 + cos x)

. (IV.1.8)

We obtain the volume contribution to the partition sum of the Gaussian model on a
triangular lattice:

lim
M,N→∞

log |−MN |
MN

=
1
π

∫ π

0
dx log

1 + K cos x +
√
(1 + K cos x)2 − 2K2(1 + cos x)

2
.

(IV.1.9)
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From Eq. (IV.1.8) we also know the contribution which grows linearly with N and
is independent of M. For reasons of symmetry, a contribution proportional to M
and independent of N with the same proportionality constant must exist. These two
terms are the surface contribution to the free energy. Thus, the free energy reads:

log |−MN | =
MN
2π

∫ 2π

0
dx log

1 + K cos x +
√
(1 + K cos x)2 − 2K2(1 + cos x)

2

+
M + N

2π

∫ 2π

0
dx log

1 + K cos x +
√
(1 + K cos x)2 − 2K2(1 + cos x)

2
√
(1 + K cos x)2 − 2K2(1 + cos x)

+O(1), as M, N → ∞. (IV.1.10)

Results

After having calculated the determinant of the interaction matrix we can write down
the volume coefficient f0 and the surface coefficients f1:

f0 =
1

2π

∫ 2π

0
dx log

1 + K cos x +
√
(1 + K cos x)2 − 2K2(1 + cos x)

2
,

f1 =
1

2π

∫ 2π

0
dx log

1 + K cos x +
√
(1 + K cos x)2 − 2K2(1 + cos x)

2
√
(1 + K cos x)2 − 2K2(1 + cos x)

. (IV.1.11)

In the next step we study the range of the parameter K, for which the system is well
defined. In order to do this we examine the integrand f of the volume contribution:

f (K, x) = log
[

1 + K cos x +
√
(1 + K cos x)2 − 2K2(1 + cos x)

]
. (IV.1.12)

The system is ill-defined if the argument of the logarithm or the square root is smaller
than zero. We start by studying the zeros of the square root:

(1 + K cos x)2 − 2K2(1 + cos x) !
= 0, (IV.1.13)

K1,2(x) = − 1
cos x±

√
2 + 2 cos x

. (IV.1.14)

One can easily verify that

K1 ([0, π]) =

[
−∞,−1

3

]
∪ [1, ∞], (IV.1.15)

K2 ([0, π]) =

[
2
3

, 1
]

. (IV.1.16)

The only subset of R for which the argument of the square root does not possess
any zeros is the interval (−1/3, 2/3). It remains to prove that the argument of the
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logarithm is always positive for K ∈ (−1/3, 2/3) and x ∈ R. The argument of the
logarithm reads

1 + K cos x +
√
(1 + K cos x)2 − 2K2(1 + cos x). (IV.1.17)

Since the square root is always positive and |K cos x| < 1, the whole expression re-
mains strictly positive. The volume coefficient and the surface coefficient are plotted
in Fig. IV.1.2. One should note that in contrast to the square lattice, see Sec. II.2.2,
f0 and f1 do not feature any symmetries in K. The reason for this behaviour is
the fact that on a square lattice one can map the ferromagnetic system to the anti-
ferromagnetic system by changing the sign of every second spin, while this is not
possible on a triangular lattice.

IV.1.2. Hexagonal lattice

N+1

N+2

2N

M

N

2N+1

N

1

2
2N+2

Figure IV.1.3.: A hexagonal lattice consisting of M = 7 columns, N = 4 spins each.
The first three rows are marked by a dashed line. When using the il-
lustrated enumeration of spins two neighbouring columns interact in
the same way as in the case of a rectangular lattice. However, the in-
teraction of spins within a column is different for odd and even rows.

In this section we study the Gaussian model on a hexagonal lattice. The exact form
of the interaction matrix depends on the enumeration of the spins. We consider a
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system of M columns, N spins each, the corresponding numeration is illustrated in
Fig. IV.1.3. We assume M to be odd and N to be even, in order to fulfill the prerequi-
sites for certain theorems, which are applied later in this section. The boundary spins
are subject to free boundary conditions. For the chosen enumeration the interaction
matrix M ∈ Mat(MN ×MN, R) reads

M =



M(2) M12 0 · · · 0 0 0
M12 M(1) M12 · · · 0 0 0

...
. . .

...

0 0 0 · · · M12 M(1) M12

0 0 0 · · · 0 M12 M(2)


. (IV.1.18)

The off-diagonal blocks are M12 = K
2 1N , same as for a rectangular lattice. They

describe th interaction between the spins of two neighbouring spin columns. The
entries on the main diagonal alternate between M(1) and M(2) ∈ Mat(N × N, R)
and describe the interaction of the spins in one column. The interaction matrix of
the spins in the odd columns M(1) reads

M(1) =



−1
−1 K

2
K
2 −1

−1 K
2

K
2 −1

. . .

−1 K
2

K
2 −1

−1



. (IV.1.19)

The interaction matrix of the spins in the even columns reads

M(2) =



−1 K
2

K
2 −1

−1 K
2

K
2 −1

. . .

−1 K
2

K
2 −1


. (IV.1.20)
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Calculating the determinant

The interaction matrix M is a 2-periodic block tridiagonal block centrosymmetric
matrix. The properties of such matrices, in particular their determinants, have been
studied extensively, among others in [20]. In order to calculate the determinant we
apply theorem 2 from [20] (The prerequisite is that M is a block matrix of odd size):

det M =
(

det M(2)
)M+1

2

M−1
2

∏
k=1

det
[

M(1) − K2

2

(
1− cos

(
2π

k
M + 1

)) (
M(2)

)−1
]

.

(IV.1.21)

To evaluate this expression we need

(
M(2)

)−1
=

1

1− K2

4



−1 −K
2

−K
2 −1

−1 −K
2

−K
2 −1

. . .

−1 −K
2

−K
2 −1


. (IV.1.22)

To keep the notations short we introduce following abbreviations:

αk := 2π
k

M + 1
,

a ≡ a(αk, K) := −1 + (1− cos αk)
K2

2
1

1− K2

4

,

b ≡ b(αk, K) := (1− cos αk)
K3

4
1

1− K2

4

=
K
2

(1 + a) . (IV.1.23)

In the next step we calculate the determinant DN :

DN :=det
[

M(1) − K2

2

(
1− cos

(
2π

k
M + 1

)) (
M(2)

)−1
]

=det



a b
b a K

2
K
2 a b

b a K
2

. . .

a b
b a


(IV.1.24)
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This matrix is a 2-periodic Toeplitz matrix. The determinants of such matrices are
tightly connected to Chebyshev polynomials and have been studied, e.g. in [3]. In
the remaining part of the calculations we apply results (in particular theorem 2.5)
from [3]. We start by defining ∆N+1 ∈ Mat(N + 1× N + 1), ∆N−1 ∈ Mat(N − 1×
N − 1), which are both of odd size:

∆N+1 :=



a K
2

K
2 a b

b a K
2

K
2 a b

. . .

a b
b a



We obtain ∆N−1 from ∆N+1 by removing both last rows and columns. Applying the
Laplace expansion on |∆N+1| yields:

DN =
|∆N+1|+ K2

4 |∆N−1|
a

. (IV.1.25)

Applying theorem 2.5 from [3] allows to calculate both determinants on the right-
hand side:

|∆N+1| = a
N/2

∏
l=1

[
a2 − b2 − K2

4
− b K cos

(
π

l
N
2 + 1

)]
. (IV.1.26)

Finally, we apply the Euler-Maclaurin summation formula to evaluate the logarithm
for N → ∞:

log
∣∣∣∣1a ∆N+1

∣∣∣∣ = N
2

log
a2 − b2 − K2

4 +

√(
a2 − b2 − K2

4

)2
− b2K2

2

+ log
a2 − b2 − K2

4 +

√(
a2 − b2 − K2

4

)2
− b2K2

2

√(
a2 − b2 − K2

4

)2
− b2K2

. (IV.1.27)
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IV.1.2. Hexagonal lattice

Here and in the remaining part of this section we omit and neglect all contributions
which decay exponentially with the system size. We introduce following notations:

χ0(αk, K) := log
a2 − b2 − K2

4 +

√(
a2 − b2 − K2

4

)2
− b2K2

2
,

χ1(αk, K) := log
a2 − b2 + K2

4 +

√(
a2 − b2 − K2

4

)2
− b2K2

2

√(
a2 − b2 − K2

4

)2
− b2K2

. (IV.1.28)

The determinant |∆N−1| reads for N → ∞:

log
∣∣∣∣1a ∆N−1

∣∣∣∣ = N
2

χ0 − log

√(
a2 − b2 − K2

4

)2

− b2K2. (IV.1.29)

Now we can write down the determinant DN :

log DN = log
∣∣∣∣1a ∆N−1

∣∣∣∣+ log
(

1 +
K2

4
|∆N−1|
|∆N+1|

)
= log

∣∣∣∣1a ∆N−1

∣∣∣∣+ log
(

1 +
K2

4
e−χ0

)

= log
∣∣∣∣1a ∆N−1

∣∣∣∣+ log

1 +
K2

4
2

a2 − b2 − K2

4 +

√(
a2 − b2 − K2

4

)2
− b2K2



= log
∣∣∣∣1a ∆N−1

∣∣∣∣+ log
a2 − b2 + K2

4 +

√(
a2 − b2 − K2

4

)2
− b2K2

a2 − b2 − K2

4 +

√(
a2 − b2 − K2

4

)2
− b2K2

=
N
2

χ0 + log
a2 − b2 + K2

4 +

√(
a2 − b2 − K2

4

)2
− b2K2√(

a2 − b2 − K2

4

)2
− b2K2

, (IV.1.30)

and rewrite this determinant in the following way:

log DN(αk, K) =
N
2

χ0(αk, K) + χ1(αk, K). (IV.1.31)
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One should keep in mind that the dependence on (αk, K) is hidden in the variables
a, b. Now we can concern ourselves with the partition sum of the system:

log |det M| = M + 1
2

log det M(2) +

N−1
2

∑
k=1

[
N
2

χ0(αk, K) + χ1(αk, K)
]

=
(M + 1)

2
N
2

log
(

1− K2

4

)
+

M + 1
2π

∫ π

0
dα

[
N
2

χ0(α, K) + χ1(α, K)
]

−1
2

[
N
2

χ0(0, K) + χ1(0, K) +
N
2

χ0(π, K) + χ1(π, K)
]

. (IV.1.32)

Results

In the last step we collect terms with respect to powers of M and N, keeping in mind
that χ0(0, K) = log(1− K2/4), and obtain:

log |det M| = MN f0 + N f1,N + M f1,M + f2, (IV.1.33)

where the constants f0, f1,M, f1,N , f2 do not depend on M, N:

f0(K) =
1
4

log
(

1− K2

4

)
+

1
4π

∫ π

0
dα χ0(α, K),

f1,N(K) =
1

4π

∫ π

0
dα χ0(α, K)− 1

4
χ0(π, K),

f1,M(K) =
1

2π

∫ π

0
dα χ1(α, K),

f2(K) =
1

2π

∫ π

0
dα χ1(α, K)− χ1(0, K) + χ1(π, K)

2
. (IV.1.34)

The functions χ0/1 are defined in Eq. (IV.1.28) and Eq. (IV.1.23). One should note that
there are two different surface contributions. These contributions correspond to the
boundaries of length M and N. The thermodynamic coefficients fi as functions of
the coupling K are plotted in Fig. IV.1.4. Of special note are the surface coefficients
f1,M, f1,N . In Fig. IV.1.5, the rate f1,N/ f1,M and the relative error (2 f1,M − f1,N) / f1,N
are plotted as a function of the coupling K. From Fig. IV.1.5 one can recognise that
2 f1,M equals f1,N up to few percent error. In other words, the vertically oriented
surfaces of the system, see Fig. IV.1.6, contribute (for M = N) twice as much to the
free energy as the horizontally oriented surfaces. The reason for this is the chosen
enumeration of spins: The number of surface spins in the left (right) surface column,
grows proportionally to 2N, since the spins of the second ((M− 1)-st) spin column
belong to this surface (these spins are marked with circles Fig. IV.1.6). However, the
number of surface spins in the upper and lower surface rows grows linearly with M
and not 2M.
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Figure IV.1.4.: Thermodynamic coefficients fi of the Gaussian model on a hexagonal
lattice plotted versus the spin-spin coupling K, see Eq. (IV.1.34) for
details. All coefficients are symmetric under the transformation K 7→
−K, all, except the corner contribution f2 are defined on the whole
interval K ∈ [−2/3, 2/3]. The coefficient f2 diverges for K → ±2/3.
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marked with the circles should be considered surface spins.

IV.1.3. Summary

We calculated the partition sum of the Gaussian model on the triangular and the
hexagonal lattice with free boundary conditions. The free energy of the Gaussian
model on the hexagonal lattice is a sum of four terms, see Eq. (IV.1.33), Eq. (IV.1.34):
a volume term, proportional to the number of spins in the system, two different sur-
face terms which correspond to the two different types of surfaces, see Fig. IV.1.3,
and a constant contribution which can be interpreted as a corner contribution in ac-
cordance to Eq. (I.0.4). All additional contributions to the free energy beyond these
four contributions decay exponentially with the system size.
The calculation of the full partition sum for the triangular lattice turns out to be more
complicated. However, it was possible to determine the volume and the surface con-
tribution, see Eq. (IV.1.10). The triangular system no longer features the symmetry
K 7→ −K in contrast to the free energy of the Gaussian model on the rectangular and
the hexagonal lattice.

Summarising, one can say that the calculation of partition sums on different lattice
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IV.1.3. Summary

types than the rectangular lattice involves more advanced mathematical techniques.
The reason for this is that the underlying interaction matrices no longer possess sim-
ple mathematical properties which allow the application of the powerful Szegö and
the Szegö-Widom theorems: The interaction matrices are no longer (Block)-Toeplitz,
symmetric or tridiagonal.
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IV.2. Alternative interactions

In this section we discuss the Gaussian model with other than next-neighbour in-
teractions. We start by outlining the impact of general interactions on the interac-
tion matrix and the partition sum in one dimension. As an example, we consider a
one-dimensional system with quadratically decaying interactions and exponentially
decaying interactions.

IV.2.1. General results

We consider a spin chain and assume that the first spin interacts with the n-th spin
in the same way as the m-th spin with the (m + n− 1)-th spin. Then the interaction
can be fully characterised by a sequence of numbers (ak)k∈N, where a1 describes the
interaction of two spins with the distance 1 to each other, a2 the interaction of two
spins with the distance 2 to each other, etc. For the sake of simplicity, we assume
periodic boundary conditions and an odd number N of spins in the system. The
first line of the interaction matrix M reads

(−1, a1, a2, ..., a(N−1)/2, a(N−1)/2, a(N−1)/2−1, ..., a1). (IV.2.1)

The interaction matrix is a circulant, the n-th line is obtained by periodically shifting
the first line n− 1 times to the right. From the theory of circulants, see [4] for details,
one can easily obtain the eigenvalues, eigenvectors and the determinant of M. We
define the partial Fourier sum fN and the symbol f as

fN(ϕ) := 1− 2

N−1
2

∑
k=1

ak cos kϕ, (IV.2.2)

f (ϕ) := lim
N→∞

fN(ϕ). (IV.2.3)

We assume that the interaction between spins is chosen such that this limit exists.
Since M is a circulant, its eigenvectors Ψn read

(Ψn)m = exp
(

2πi
nm
N

)
, n, m ∈ {1, ..., N} . (IV.2.4)

The eigenvalues λn are given by

λn = − fN(ϕn), where ϕn = 2π
n
N

. (IV.2.5)
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Therefore, we obtain the bulk density of the free energy (βFN)/N of the finite system
in a straight-forward way:

1
N

βFN =
1

2N

N

∑
n=1

log fN(ϕn). (IV.2.6)

The bulk density of the free energy in the thermodynamic limit reads

lim
N→∞

1
N

βFN =
1

4π

∫ 2π

0
dϕ log f (ϕ), (IV.2.7)

assuming that the integral exists. The contributions beyond the volume contribution
are contained in the remaining term RN :

RN = βFN −
N
4π

∫ 2π

0
dϕ log f (ϕ)

=
1
2

N

∑
n=1

log fN(ϕn)−
N
4π

∫ 2π

0
dϕ log f (ϕ)

=
1
2

N

∑
n=1

log
fN(ϕn)

f (ϕn)
+

1
2

N

∑
n=1

log f (ϕn)−
N
4π

∫ 2π

0
dϕ log f (ϕ). (IV.2.8)

Applying the triangle inequality results in

|RN | ≤
∣∣∣∣∣12 N

∑
n=1

log
fN(ϕn)

f (ϕn)

∣∣∣∣∣+
∣∣∣∣∣12 N

∑
n=1

log f (ϕn)−
N
4π

∫ 2π

0
dϕ log f (ϕ)

∣∣∣∣∣ . (IV.2.9)

As the system grows two limits are involved: the limit of the partial sum fN , which
converges to f , and the limit which allows to transform the sum over f into the
integral. For the next-neighbour interactions and any other interactions with a fi-
nite interaction range, i.e. ak = 0 for all k above a certain value, the partial sum
fN converges to f for a finite system size N. Thus, the first term on the right-hand
side vanishes and all additional contributions to the free energy beyond the volume
contribution stem from the Euler-Maclaurin summation formula, see Sec. A.4. How-
ever, if (ak)k∈N is an infinite sequence, additional contributions to the free energy can
arise. The behaviour of these contributions in the limit N → ∞ will be determined
by the convergence behaviour of the partial sum fN . As an example we consider
quadratically decaying interactions.

IV.2.2. Quadratically decaying interactions

We start by defining the symbol f of the interaction matrix:

f (ϕ) := 1 + K− 3K
π2 (ϕ− π)2. (IV.2.10)
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Figure IV.2.1.: Left: free energy per particle of the one-dimensional Gaussian system
with quadratically decaying interactions as a function of the coupling
strength K. In contrast to the next-neighbour model, the system is
no longer symmetric around K = 0. Right: remaining term RN/N
(evaluated numerically) as a function of the system size N in a double
logarithmic plot for K = 0.1 and N = 101, ..., 104. The linear fit indi-
cates that RN decays as N−2. The decay is similar for other values of
the coupling strength K.

The Fourier series of this function is given by

f (ϕ) = 1− 12K
π2

∞

∑
k=1

cos k ϕ

k2 . (IV.2.11)

The coefficients ak, which enter the interaction matrix read

ak =
6K
π2

1
k2 , k ≥ 1. (IV.2.12)

thus the spin interaction decays quadratically with the distance between spins: The
first spin couples with the strength−1 to itself (similar to the next-neighbour model),
with the strength 6K/π2 to the second spins, with the strength 6K/(4π2) to the third
spin, etc. The eigenvalues λn of the interaction matrix read

λn = −1 +
12K
π2

N−1
2

∑
k=1

cos k ϕ

k2 . (IV.2.13)

We can immediately write down the free energy per particle:

lim
N→∞

1
N

βFN =
1

4π

∫ 2π

0
dϕ log f (ϕ)

=
1

4π

∫ 2π

0
dϕ log

[
1 + K− 3K

π2 (ϕ− π)2
]

= −1 +

√
1 + K

3K
ArcTanh

(√
3K

1 + K

)
+

1
2

log(1− 2K). (IV.2.14)
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The system is defined for values of the coupling constant K between−1 and 1/2. On
the left-hand side of Fig. IV.2.1, the free energy per particle is depicted as a function
of the coupling strength K. Additionally, on the right side of Fig. IV.2.1, the remain-
ing term RN/N is plotted in a double logarithmic plot as a function of the system
size N. The linear fit indicates that the contributions to the free energy beyond the
volume contribution no longer exponentially decay with the system size, as it was
the case for the next-neighbour interactions, see Sec. II.2.1.2. Instead, RN decays as
N−2 in the limit of large N.

IV.2.3. Exponentially decaying interactions

In this section we extend the next-neighbours Gaussian model to the Gaussian model
featuring spin-spin interactions which decay exponentially with the distance be-
tween spins. We consider the one-dimensional periodic system and discuss the bulk
density of the free energy and the remaining terms. Consider the one-dimensional
periodic chain of the size N. The Hamiltonian H reads

−βH = −
N

∑
i=1

s2
i + K

N

∑
i=1

N

∑
j>i

ρmin(|i−j|,i−j+N)sisj, (IV.2.15)

The parameter ρ ∈ (−1, 1) governs the exponential decay of the spin-spin inter-
actions. The first spin couples with the strength −1 to itself (same as in the next-
neighbour model), with the strength Kρ to the second spin, with the strength Kρ2 to
the third spin, etc. Therefore, negative ρ results in an alternating sign of the spin-
spin interactions. Positive decay parameter ρ corresponds either to ferromagnetic
interactions, if K > 0, or anti-ferromagnetic interactions, if K < 0. The system is sub-
ject to periodic boundary conditions. Thus, the interaction matrix M is a circulant,
its first line reads(

−1,
K
2

ρ,
K
2

ρ2, ...,
K
2

ρmin(|1−j,1−j+N), ..,
K
2

ρ2,
K
2

ρ

)
. (IV.2.16)

One obtains the n-th line by cyclically moving the entries of the first line to the right
n− 1 times. The eigenvalues λn of the interaction matrix can be obtained with the
same ansatz as in the next-neighbour case, see Sec. II.2.1.1. We restrict our consider-
ations to odd N. The eigenvalues read

λn = − fN(ϕn) = −1 + K
N−1

2

∑
k=1

ρk cos(k ϕn), ϕn = 2π
n
N

, n = 1, .., N. (IV.2.17)

The following limit is of interest for large systems:

lim
N→∞

fN(ϕ) = f (ϕ) = 1− K
(

1− ρ cos ϕ

1− 2ρ cos ϕ + ρ2 − 1
)

=
1 + ρ2 (1 + K)− ρ cos ϕ (2 + K)

1− 2ρ cos ϕ + ρ2 . (IV.2.18)
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The free energy of the system reads

βF =
1
2

N

∑
n=1

log |λn| =
N
2

∫ 2π

0
dϕ log f (ϕ) + R = N f exp

0 + R. (IV.2.19)

Here we applied the Euler-Maclaurin summation formula. R is the remaining term
which depends on ρ, K and N. We will discuss its properties in the last part of this
section. We can evaluate the integral in the bulk density f exp

0 of the free energy:

f exp
0 (K, ρ) =

1
2

log
1 + ρ2(1 + K) +

√
(1 + ρ2(1 + K))2 − ρ2(2 + K)2

2

=
1
2

log
1 + ρ2(1 + K) +

√
1− ρ2

√
1− ρ2(1 + K)2

2
. (IV.2.20)
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Figure IV.2.2.: Left: boundaries Kmin and Kmax as functions of the decay parameter ρ,
see Eq. (IV.2.23) and Eq. (IV.2.24), of the interval for the coupling K in
which the system is well-defined. Both functions diverge for quickly
decaying interactions, i.e. ρ → 0. For slowly decaying interactions,
ρ → 1, only anti-ferromagnetic coupling is allowed. Right: bulk den-
sity of the free energy f exp

0 as a function of the coupling K for values of
the decay parameter ρ ∈ {0.2, 0.35, 0.5}, see Eq. (IV.2.20). In contrast
to the next neighbour system, see Sec. II.2.1.1, the system is no longer
symmetric under the transformation K 7→ −K.

It is important to point out that the system is symmetric under the mapping ρ 7→ −ρ,
i.e. alternating spin-spin coupling yields the same energy as strictly ferromagnetic
or strictly anti-ferromagnetic spin-spin coupling. The system is well-defined as long
as the argument of the square root function in Eq. (IV.2.20) is not negative. The
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argument of the square root is a quadratic function of K, its zeros K1, K2 are

K1 =
1− ρ

ρ
, (IV.2.21)

K2 = −1 + ρ

ρ
. (IV.2.22)

The coefficient of K2 is −ρ2(1 − ρ2). Therefore, the system is well defined on the
interval

K ∈
[
−1 + |ρ|
|ρ| ,

1− |ρ|
|ρ|

]
. (IV.2.23)

The upper and the lower boundary of the definition interval are plotted as a func-
tion of the decay parameter ρ on the left-hand side of Fig. IV.2.2. Additionally, free
energy density f exp

0 is plotted as a function of K for intermediate values of ρ on the
right-hand side of Fig. IV.2.2. It should be pointed out that for general values of ρ
the symmetry K 7→ −K between ferromagnetic and anti-ferromagnetic interactions
of the next-neighbour model is broken for exponentially decaying interactions. In
the next step, we consider strong exponential decay, |ρ| � 1, and weak exponential
decay, |ρ| ≈ 1.

Strong exponential decay: We consider the range of allowed temperatures K as a
function of ρ, Eq. (IV.2.23). In the limit of strongly decaying spin-spin interactions,
i.e. ρ� 1 we obtain

Kmin ≈ −
1
|ρ| ,

Kmax ≈
1
|ρ| . (IV.2.24)

Considering the free energy density f exp
0 , Eq. (IV.2.20), we can rescale K with the

factor 1/|ρ| and expand the argument of the logarithm around ρ = 0:

f0

(
K
|ρ| , ρ

)
=

1
2

log
1 +
√

1− K2

2
+O (ρ) . (IV.2.25)

The system is essentially mapped on the next-neighbour system, see Sec. II.2.1.1. In
particular, the symmetry between ferromagnetic and anti-ferromagnetic coupling is
retained for very quickly decaying spin-spin interactions. One should note that the
mapping K 7→ K/ρ in the interaction matrix Eq. (IV.2.16) causes the n-th spin to
interact with the (n + 1)-st spin via the coupling K. The exponential decay sets in
starting with the (n + 2)-nd spin, where the coupling is Kρ. The free energy density
f exp
0 is plotted as a function of K for low values of ρ on the left-hand side of Fig. IV.2.3.
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IV.2.3. Exponentially decaying interactions

Weak exponential decay: Consider a Gaussian chain with a slow exponential decay
of the spin-spin interactions, i.e. |ρ| ≈ 1. For reasons of symmetry, it suffices to
consider ρ ≈ 1. We perform a series expansion of the argument of the logarithm in
Eq. (IV.2.20):

f0 (K, ρ) =
1
2

log
2 + K +

√
1− ρ

√
−2K(2 + K)

2
+O (1− ρ) . (IV.2.26)

In the limit ρ → 1 the system is defined only for K ∈ [−2, 0], meaning that only
anti-ferromagnetic coupling is allowed. On the right-hand side of Fig. IV.2.3, the
free energy density is plotted versus K for values of ρ close to 1.
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Figure IV.2.3.: Left: bulk density f exp
0 (K/ρ, ρ) of the free energy with a rescaled first

argument as a function of the coupling K for quickly decaying spin-
spin interactions, ρ ∈ {10−1, 10−2, 10−3}, see Eq. (IV.2.20). For quickly
decaying interactions, the system is similar to the next-neighbour sys-
tem, see Eq. (IV.2.25). Right: bulk density f exp

0 as a function of K for
slowly decaying spin-spin interactions, i.e. ρ ≈ 1, see Eq. (IV.2.26).
For slowly decaying interactions, the system is only defined for anti-
ferromagnetic coupling, i.e. K < 0.

Remainder term R: The remaining term R in Eq. (IV.2.19) reads

R =

∣∣∣∣∣ N

∑
n=1

log fN(ϕn)−
N
2π

∫ 2π

0
dϕ log f (ϕ)

∣∣∣∣∣ . (IV.2.27)

We divide this expression in two contributions and apply the triangle inequality:

R ≤
∣∣∣∣∣ N

∑
n=1

log
fN(ϕn)

f (ϕn)

∣∣∣∣∣+
∣∣∣∣∣∑n

log f (ϕn)−
N
2π

∫ 2π

0
dϕ log f (ϕ)

∣∣∣∣∣ . (IV.2.28)

f is smooth for all allowed values of the parameters ρ, K. According to the Euler-
Maclaurin formula the second term decays exponentially with the system size N:∣∣∣∣∣∑n

log f (ϕn)−
N
2π

∫ 2π

0
dϕ log f (ϕ)

∣∣∣∣∣ = O (N−k
)

, ∀k ∈N, as N → ∞. (IV.2.29)
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IV.2. Alternative interactions

In the next step, we consider the first term in Eq. (IV.2.28):∣∣∣∣∣ N

∑
n=1

log
fN(ϕn)

f (ϕn)

∣∣∣∣∣ . (IV.2.30)

The partial sum fN can be expressed using the geometric series:

fN(ϕ) = 1 + K− K
1− ρ cos ϕ− ρN+1 cos(N + 1)ϕ + 1

2 ρ2(N+1)

1 + ρ2 − 2ρ cos ϕ

= f (ϕ)− K ρN+1 cos(N + 1)ϕ + 1
2 ρN+1

1 + ρ2 − 2ρ cos ϕ
= f (ϕ) +O

(
ρN+1

)
. (IV.2.31)

The function f has no zeros for any allowed combinations of values of K, ρ. Thus,
we can write

fN(ϕ)

f (ϕ)
= 1 +O

(
N−k

)
, ∀k ∈N, as N → ∞. (IV.2.32)

And, finally,∣∣∣∣∣ N

∑
n=1

log
fN(ϕn)

f (ϕn)

∣∣∣∣∣ = O (N−k
)

, ∀k ∈N, as N → ∞. (IV.2.33)

We have shown that for all non-critical values of ρ, K the remaining term R decays
exponentially with the system size in the thermodynamic limit:

βF = N f exp.
0 +O

(
N−k

)
, ∀k ∈N, as N → ∞. (IV.2.34)

IV.2.4. Summary

In this section, we discussed the impact of different spin-spin interaction potentials
on the partition sum of the Gaussian system. In one dimension, we calculated the
partition sum of the Gaussian model with exponentially decaying interactions with
periodic boundary conditions. We studied the limits of strongly and weakly decay-
ing interactions. All contributions to the free energy beyond the volume contribution
decay exponentially with the system size. In addition, we studied the partition sum
of a Gaussian chain with quadratically decaying spin-spin interactions and periodic
boundary conditions. In this system, the contributions to the free energy beyond the
volume contribution – which is proportional to the number N of spins in the system
– no longer exponentially decay in the thermodynamic limit. Instead, corrections to
the free energy decay as N−2. In general, one can assume that long-range spin-spin
interactions in the Gaussian model lead to algebraically decaying corrections to the
free energy.
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Part V.

Back Matter





A. Appendices

A.1. Trigonometric relations

In this section we list some trigonometric relations which were used throughout this
thesis.

Fourier decomposition of cosj: In Chap. II.2, the Fourier decomposition of integer
powers of trigonometric functions was used. We consider even and odd powers of
cosj for integer powers j ∈N :

cos2n(x) =
1

22n

[(
2n
n

)
+ 2

n

∑
k=1

(
2n

n− k

)
cos (2kx)

]
, (A.1)

cos2n−1(x) =
1

22n−2

n

∑
k=1

(
2n− 1
n− k

)
cos ((2k− 1) x) . (A.2)

Addition theorem: The following addition theorem for the cosine function turned
out to be useful:

N

∑
k=1

cos (x + ky) = cos
(

x +
N + 1

2
y
) sin

(
Ny
2

)
sin y

2
. (A.3)

Discrete sine transformation: The transformation matrix F ∈ Mat (N × N) of the
discrete sine transformation,

Fi,j =

√
2
N

sin
(

ij
π

N + 1

)
, (A.4)

is symmetric and orthonormal due to the orthonormality of the discrete sine func-
tion:

N

∑
j=1

Fi,jFj,k =
2
N

N

∑
j=1

sin
(

ij
π

N + 1

)
sin
(

jk
π

N + 1

)
= δi,k. (A.5)
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A.2. Toeplitz matrices and circulants

In this section, we discuss the properties of circulants, Toeplitz and block Toeplitz
matrices. We derive the eigenvalues, the eigenvectors, and, in some cases, the in-
verse matrices of the matrices which appear as interaction matrices of the Gaussian
system. Some of the results are taken from [14] and [4], which is also a good sum-
mary on the topic of Toeplitz matrices and circulants. This section is structured in
a similar fashion as the main section Part. II, which uses the results derived here:
We start with interaction matrices of one-dimensional systems and discuss two and
three-dimensional systems with different boundary conditions.

One dimension

We consider a string of N spins si ∈ R, i = 1, .., N.

Periodic boundary conditions

The interaction matrix Mp ∈ Mat (N × N, R) of the one-dimensional Gaussian chain
with periodic boundary conditions reads.

Mp =



−1 K
2 0 · · · 0 0 K

2
K
2 −1 K

2 · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 −1 K

2
K
2 0 0 · · · 0 K

2 −1


. (A.6)

The goal is to obtain the eigenvalues, eigenvectors and the inverse of this matrix.
Mp is a circulant. All circulants share the same eigenvectors, see [4]. To obtain an
eigenvector Ψ = (Ψ1, ..., ΨN) we try the ansatz Ψn = zn. This vector has to fulfill

MpΨ = λΨ (A.7)

for an eigenvalue λ. Written out, this equation reads

− z + K
2

(
z2 + zN

)
= λz, (A.8)

− zn + K
2

(
zn−1 + zn+1

)
= λzn, ∀ n = 2, ..., (N − 1), (A.9)

− zN +
(

z + zN−1
)
= λzN−1. (A.10)

Choosing z such that zN = 1 leads to N identical equations. We have N different
choices for z: zn = exp((2π i n)/N), n = 1, ..., N. We denote the corresponding
eigenvalues with λn:

λn = −1 + K cos
(
2π n

N

)
. (A.11)
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Constructing a real orthonormal basis

Our next step is to construct a real orthonormal basis of eigenvectors of Mp. With

Ψ(m)
n we denote the m-th entry of the n-th complex eigenvector:

Ψ(m)
n = zm

n = exp
(
2π i mn

N

)
. (A.12)

These vectors are orthogonal with respect to the standard complex scalar product:

Ψn ·Ψm =
N

∑
j=1

(
Ψ(j)

n

)∗
Ψ(j)

m =
N

∑
j=1

e2πi
j

N (m−n) =

{
N, if m = n,
0, else.

(A.13)

This follows from applying trigonometric relations from Sec. A.1 to the real and
imaginary part of the sum. One should note that the eigenvectors Ψn and ΨN−n
share the same eigenvalue λn:

λn = −1 + K cos
(
2π n

N

)
, (A.14)

meaning that for odd N all but the N-th eigenvalue are 2-fold degenerate. For even
N, the N/2-th eigenvector is also non-degenerate. We start by considering

N odd: For each n = 1, ..., (N − 1)/2 we define pairs of eigenvectors Φn:

Φ(j)
2n := 1√

2N

(
Ψ(j)

n + Ψ(j)
N−n

)
=
√

2
N cos 2π n

N j, (A.15)

Φj
2n−1 := 1

i
√

2N

(
Ψ(j)

n −Ψ(j)
N−n

)
=
√

2
N sin 2π n

N j. (A.16)

and the vector

Φ(j)
0 := 1√

N
. (A.17)

These vectors are real, orthonormal and linearly independent. Since they are con-
structed as linear combinations of eigenvectors which share the same eigenvalue,
they are also eigenvectors of Mp.

N even: For n = 1, ..., N/2− 1 we define

Φ(j)
2n := 1√

2N

(
Ψ(j)

n + Ψ(j)
N−n

)
=
√

2
N cos 2π n

N j, (A.18)

Φj
2n−1 := 1

i
√

2N

(
Ψ(j)

n −Ψ(j)
N−n

)
=
√

2
N sin 2π n

N j, (A.19)

and the vectors

Φ(j)
0 := 1√

N
, (A.20)

Φj
N−1 := (−1)j

√
N

. (A.21)

Which form an orthonormal basis of the RN and are eigenvectors of Mp.
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Calculating the inverse interaction matrix

In this section we calculate the inverse matrix of the interaction matrix Mp. Mp is
real and symmetric, thus there exists an orthonormal matrix T such that

Tt MpT = M̃p = diag(λ1, ..., λN). (A.22)

We can write the inverse matrix as

M−1
p = T M̃−1

p Tt. (A.23)

The matrix T consists of columns which are orthonormal eigenvectors Φ of Mp. Us-

ing this, we rewrite the matrix entries
(

M−1
p

)
ij(

M−1
p

)
ij
= ∑

m

TimTjm
λm

= ∑
m

Φ(i)
m Φ(j)

m
λm

. (A.24)

We plug in the explicit form for Φn.

N odd:

(
M−1

p

)
ij
= 1

N(−1+K) +
2
N

N−1
2

∑
n=1

sin 2π
n
N i sin 2π

n
N j+cos 2π

n
N i cos 2π

n
N j

−1+K cos(2π
n
N )

= 1
N(−1+K) +

2
N

N−1
2

∑
n=1

cos[2π
n
N (i−j)]

−1+K cos(2π
n
N )

. (A.25)

N even: (
M−1

p

)
ij
= 1

N(−1+K) +
(−1)i+j

N(−1−K)

+ 2
N

N−2
2

∑
n=1

sin 2π
n
N i sin 2π

n
N j+cos 2π

n
N i cos 2π

n
N j

−1+K cos(2π
n
N )

= 1
N(−1+K) +

(−1)i+j

N(−1−K) +
2
N

N−2
2

∑
n=1

cos[2π
n
N (i−j)]

−1+K cos(2π
n
N )

. (A.26)

Properties of M−1
p : We define the matrix M̂−1

p as:

(M̂−1
p )ij := 1

π

∫ π

0
dx cos[(i−j)x]
−1+K cos(x) . (A.27)

Applying the trapezoidal rule for large N (see Sec. A.4) yields:(
M−1

p

)
ij
=
(

M̂−1
p

)
ij
+O

(
N−k

)
, ∀k ∈N as N → ∞. (A.28)

Both matrices M−1
p , M̂−1

p are
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• real

• symmetric

• Toeplitz.

Furthermore, M−1
p is a circulant, see Sec. A.2. This can be illustrated as follows: We

consider the first row of M−1
p for odd N. For j = 2, ..., (N + 1)/2 we have

(
M−1

p

)
1,j

= 1
M(−1+K) +

1
N

N−1

∑
n=1

cos[2π
n
N (1−j)]

−1+K cos 2
π nN

= 1
M(−1+K) +

1
N

N−1

∑
n=1

cos[2π
n
N (j−1)+2πn]

−1+K cos 2
π nN

= 1
M(−1+K) +

1
N

N−1

∑
n=1

cos[2π
n
N (1−(N+2−j))]

−1+K cos 2
π nN

=
(

M−1
p

)
1,(N+2−j)

. (A.29)

Using the symmetry and the Toeplitz property of M−1
p , it follows that M−1

p is a cir-
culant. One should note that M̂−1

p is not a circulant!

Free boundaries

In the next step, we consider a Gaussian spin chain with free boundary conditions.
The interaction matrix Mf ∈ Mat

(
RN ×RN) reads

Mf =



−1 K
2 0 · · · 0 0 0

K
2 −1 K

2 · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 −1 K

2
0 0 0 · · · 0 K

2 −1


. (A.30)

Instead of guessing an eigenvector, we apply the Laplace expansion to directly cal-
culate the determinant. We obtain the recursion

det MN = − det MN−1 − K2

4 det MN−2, (A.31)

det M1 = −1, det M2 = 1− K2

4 . (A.32)

The following ansatz fulfills this recursion relation

det MN =
τN+1
+ −τN+1

−
τ+−τ−

= τN
+

N

∑
n=0

(
τ−
τ+

)n
= τN

−

N

∑
n=0

(
τ+
τ−

)n
, (A.33)
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where

τ±(x, y) =
x±

√
1− y2

2
, (A.34)

τ± ≡ τ±(−1, K) = −1±
√

1−K2

2 . (A.35)

This result already suffices to calculate the determinant and the partition sum. How-
ever, we also estimate the eigenvalues, since we need them for future calculations.
We consider the equation for eigenvalues

0 !
= det (MN − λ · 1) = τN+1

+ (−1−λ,K)−τN+1
− (−1−λ,K)

τ+(−1−λ,K)−τ−(−1−λ,K) . (A.36)

For this equation to hold, both following relations have to be true:

τN+1
+ (−1− λ, K) = τN+1

− (−1− λ, K) ∧ τ+(−1− λ, K) 6= τ−(−1− λ, K) (A.37)

⇔ τ−
τ+

= e2π i n
N+1 ∧ n ∈ {1, ..., N} . (A.38)

Thus, we have N possible choices for τ−/τ+. As we will see these choices correspond
to the N eigenvalues λn.

τ−
τ+

=
−1−λ−

√
(−1−λ)2−K2

−1−λ+
√

(−1−λ)2−K2
=
−1−λ−i

√
K2−(−1−λ)2

−1−λ+i
√

K2−(−1−λ)2

= 2(−1−λ)2−K2

K2 − 2 i (−1−λ)
√

K2−(−1−λ)2

K2 . (A.39)

One can easily verify that |τ−/τ+| = 1. Thus, for every choice n ∈ {1, ..., N} both
conditions I, I I have to be true:

I. Re
(

τ−
τ+

)
= cos 2Θn, (A.40)

II. Im
(

τ−
τ+

)
= sin 2Θn, Θn = π n

N−1 . (A.41)

Condition I implies

I. ⇒ λn = −1± K cos Θn. (A.42)

To pin down the sign, we use II:

II. ⇒ sgn(−1− λn) = sgn(− sin 2Θn). (A.43)

Thus, we finally obtain the eigenvalues of the interaction matrix for free boundary
conditions:

λn = −1 + K cos Θn, Θn = π n
N+1 , n = 1, ..., N. (A.44)

One should note the similarity to the eigenvalues of the periodic system, Eq. (A.11).
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Eigenvectors and the inverse

In this section, we briefly list and discuss the eigenvectors and the inverse M−1
f of the

interaction matrix of the one-dimensional free Gaussian chain. Most of the results
are obtained from [14]. Similar to the eigenvectors of the periodic one-dimensional
case the eigenvectors Φn of the N × N interaction matrix of the free Gaussian chain
read

Φn(k) =
√

2
N + 1

sin
(

kn
π

N + 1

)
. (A.45)

These vectors are orthonormal due to the orthonormality of the sine function. The
transformation matrix which diagonalises M−1

f and Mf is the discrete sine transform
F:

Fi,j =

√
2

N + 1
sin
(

i j
π

N + 1

)
. (A.46)

Applying this transformation to the inverse interaction matrix in diagonal form we
obtain M−1

f : (
M−1

f

)
i,j
=

N

∑
k=1

Fi,kFk,j

λk
=

2
N + 1

N

∑
k=1

sin i k π
N+1 sin j k π

N+1

−1 + K cos k π
N+1

. (A.47)

Two dimensions

In this section we derive the eigenvectors of the interaction matrix of the Gaussian
model in two dimensions for toroidal, cylindric, Moebius strip and free boundary
conditions. Additionally, we study the inverse for free and toroidal boundary con-
ditions.

Toroidal boundaries

We start with toroidal boundary conditions

Interaction matrix, eigenvalues

We denote the interaction matrix as M2d
t . The system size dictates that M2d

t ∈
Mat (NM× NM, R) and

M2d
t =



Mp
K
2 1N 0 · · · 0 0 K

2 1N
K
2 1N Mp

K
2 1N · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 1N Mp

K
2 1N

K
2 1N 0 0 · · · 0 K

2 1N Mp


. (A.48)
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Here, Mp ∈ Mat (N × N, R) is the interaction matrix of the one-dimensional Gaus-
sian model with periodic boundary conditions. To guess the eigenvectors Ψn,m ∈
RNM we try the following ansatz:

Ψn,m =
(

z1
mun, z2

mun, ..., zM
m un

)
, n ∈ {1, ..., N}, m ∈ {1, ..., M}, (A.49)

where un ∈ RN is an eigenvector of Mp with the corresponding eigenvalue λn see
Sec. II.2.1.1, and zM

m = 1. We denote the nm-the eigenvalue with αt
nm (the index t

referring to toroidal boundaries) and write down the eigenvalue equation:

M2d
t Ψnm = αt

nmΨnm. (A.50)

Plugging in our ansatz for the eigenvectors reduces the number of linear equations
from MN equations to N equations. We write these in matrix form:[

K
2 1N

(
zm + z−1

m

)
+ Mp

]
un = αnmun. (A.51)

Since un is an eigenvector of Mp,

Mpun = λnun =
(
−1 + K cos 2π n

N

)
un, (A.52)

and zm = exp((2π i m)/M), we obtain all eigenvalues αt
nm of the interaction matrix

M2d
t :

αt
nm = −1 + K cos ϕn + K cos ϕm = −1 + K cos 2π

n
N

+ K cos 2π
m
M

. (A.53)

The condition 2|K| < 1 results from the requirement that all eigenvalues have to
be negative. One should point out the similarity to the eigenvalues of the one-
dimensional system, see Eq. (A.11).

Orthonormal eigenbasis

In the next step we determine a orthonormal set of real eigenvectors of M2d
t . To

simplify the notation we denote the interaction matrix of the system with toroidal
boundary conditions with Mt (instead of M2d

t ) during this section. We consider only
odd N, M, the generalisation to even system sizes will be obvious from the one-
dimensional case. The eigenvalues of Mt read

αn,m = −1 + K cos 2π n
N + K cos 2π m

M , (A.54)

and the corresponding complex eigenvectors are Ψn,m. We denote the ((i− 1)M + j)-
th entry of Ψn,m as Ψ(i,j)

n,m :

Ψ(i,j)
n,m = e2πi n

N e2πi m
M . (A.55)
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These eigenvectors are orthogonal with respect to the standard complex scalar prod-
uct. For each n = 1, ..., N−1

2 and m = 1, ..., M−1
2 the eigenvalues αt

n,m are four-fold
degenerate:

αn,m = αn,M−m = αN−n,m = αN−n,M−m. (A.56)

Furthermore, for (n = N and m = 1, ..., M−1
2 ) or (m = M and n = 1, ..., N−1

2 ) the
eigenvalues are two-fold degenerate. And, finally, the eigenvalue αNM is not degen-
erate at all. Using these properties we construct the real eigenvectors Φ of Mt. For
each choice of n = 1, ..., N−1

2 and m = 1, ..., M−1
2 the four eigenvectors

Φ(i,j) = 2√
NM


cos

(
2π m

M i
)

cos
(
2π n

N j
)

,
cos

(
2π m

M i
)

sin
(
2π n

N j
)

,
sin
(
2π m

M i
)

cos
(
2π n

N j
)

,
sin
(
2π m

M i
)

sin
(
2π n

N j
)

.

(A.57)

For each choice of (n = N and m = 1, ..., M−1
2 ) or (m = M and n = 1, ..., N−1

2 ) the two
eigenvectors

Φ(i,j) =
√

2
NM

{
cos 2πi m

M ,
sin 2πi m

M , for n = N.
(A.58)

or

Φ(i,j) =
√

2
NM

{
cos 2πi n

N ,
sin 2πi n

N , for m = M,
(A.59)

And, finally the eigenvector

Φ(i,j)
N,M = 1√

NM
. (A.60)

The normalisation constant results from the relation

N

∑
j=1

cos2 (2π n
N j
)
= N

2 . (A.61)

Estimating the inverse M−1
t

In this section, we estimate the inverse matrix M−1
t of the interaction matrix. The

course of action is similar to the one-dimensional case: We calculate the inverse via
the orthonormal transformation T:

Tt MtT = M̃t = diag (α1,1, ..., αM,N) , (A.62)

M−1
t = TM̃−1

t Tt. (A.63)
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We obtain the entries of the matrix T using the eigenvectors Φ:

T(i,j)(n,m) = Φ(i,j)
n,m . (A.64)

The matrix T, as well as the interaction matrix and its inverse in two dimensions,
is a block matrix. Therefore, the first index, (i, j), denotes the block and the second
index, (n, m), denotes the position within the block. This notation for matrix entries
of block matrices will be used throughout the thesis. The inverse M−1

t can be written
as: (

M−1
t

)
(i,j)(k,l)

=
M

∑
m=1

N

∑
n=1

Φ(i,k)
n,m Φ(j,l)

n,m
αn,m

= 1
NM(−1+2K) +

2
NM

M−1
2

∑
m=1

cos 2π
m
M (i−j)

−1+K+K cos 2π
m
M

+ 2
NM

N−1
2

∑
n=1

cos 2π
n
N (k−l)

−1+K+K cos 2π
n
N

+ 4
MN

M−1
2

∑
m=1

N−1
2

∑
n=1

cos 2π
m
M (i−j) cos 2π

n
N (k−l)

−1+K cos 2π
n
N +K cos 2π

m
M

. (A.65)

We define the matrix M̂−1
t through its matrix entries,(

M̂−1
t

)
(i,k)(j,l)

:= 1
(2π)2

∫ 2π

0
dx
∫ 2π

0
dy cos x(i−j) cos y(k−l)
−1+K cos x+K cos y , (A.66)

one should note that the matrix entries of M̂−1
t are asymptotically equal to those of

M−1
t in the thermodynamic limit of large system size(

M−1
t

)
(i,k)(j,l)

=
(

M̂−1
t

)
(i,k)(j,l)

+ R(N, M, K), as M, N → ∞. (A.67)

The remaining term R vanishes exponentially with the size of the matrix.

Properties of M̂−1
t , M−1

t : Using the definition of M̂−1
t , M−1

t we recognise the fol-
lowing properties:

• M̂−1
t , M−1

t are real and symmetric. Every block of M̂−1
t , M−1

t is real and
symmetric. Thus, M̂t, M−1

t are symmetric as block matrices.

• Every block is Toeplitz. Furthermore, M̂t, M−1
t is Block-Toeplitz.

• In contrast to M̂−1
t , every block of M−1

t is a circulant. M−1
t is a block-circulant.

Cylindric boundaries

In this section we calculate the eigenvalues of the interaction matrix of the two-
dimensional Gaussian system with cylindric boundary conditions. We omit the cal-
culation of the eigenvectors, due to its similarity to the calculation of the eigenvectors
of the toroidal and the free systems.

134



A.2. Toeplitz matrices and circulants

Interaction matrix

The interaction matrix M2d
c reads.

M2d
c =



Mp
K
2 1N 0 · · · 0 0 0

K
2 1N Mp

K
2 1N · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 1N Mp

K
2 1N

0 0 0 · · · 0 K
2 1N Mp


. (A.68)

Again, Mp ∈ Mat
(
RN ×RN) is the interaction matrix of the one-dimensional pe-

riodic system. Since this matrix is no longer a block-circulant we have to come up
with a new ansatz for the eigenvectors Ψ: Let un be the n-th eigenvector of the one-
dimensional system Mp. To guess the eigenvectors Ψ of M2d

c we try the ansatz

Ψ = (z1un, ..., zMun). (A.69)

We are looking for M different M-tuples (z1, ..., zM), such that the eigenvalue equa-
tion

M2d
c Ψ = αΨ (A.70)

is fulfilled for an eigenvalue α. We write down the equation explicitly:

1.
(
z1λn + z2

K
2

)
un = α z1un,

2.
(
zMλn + zM−1

K
2

)
un = α zMun,

3.
(
zm

K
2 + zm+2

K
2 + zm+1λn

)
un = α zm+1un, ∀m = 1, ..., M− 2. (A.71)

Since all vectors un are different from the zero vector, we derive the following equa-
tion system:

1. z1λn + z2
K
2 = α z1,

2. zMλn + zM−1
K
2 = α zM,

3. zm
K
2 + zm+2

K
2 + zm+1λn = α zm+1, ∀m = 1, ..., M− 2. (A.72)

We interpret this equation as a homogeneous linear equation for (z1, ..., zM). This
equation possesses a solution if and only if the determinant of the corresponding
matrix is different from zero. However, the corresponding matrix is the M × M
interaction matrix of the one-dimensional free Gaussian chain, with the entry λn − α
in the main diagonal, instead of −1. Using the same methods as in Sec. II.2.1.2,
for each choice of un, we obtain M different M-tuples (z1, ..., zM). We denote the
corresponding eigenvalues with αc

nm, n = 1, ...N, m = 1, ..., M:

αc
nm = −1 + K cos ϕn + K cos θm = −1 + K cos 2π n

N + K cos π m
M+1 . (A.73)

135



A. Appendices

The index c refers to cylindric boundary conditions and will be omitted whenever it
is obvious which type of boundary conditions is under consideration. One should
point out the similarity to the eigenvalues of the toroidal system, see Eq. (A.53), as
well as the one-dimensional systems, see Eq. (A.11) and Eq. (A.44).

Free boundary conditions

After having estimated the properties of the interaction matrix for toroidal and cylin-
dric boundary conditions, we address the free boundary conditions in this section.

Interaction matrix

The interaction matrix M2d
f results from removing all entries which correspond to

periodic interactions from the interaction matrix of cylindric boundaries M2d
c :

M2d
f =



Mf
K
2 1N 0 · · · 0 0 0

K
2 1N Mf

K
2 1N · · · 0 0 0

...
. . .

...

0 0 0 · · · K
2 1N Mf

K
2 1N

0 0 0 · · · 0 K
2 1N Mf


. (A.74)

Instead of the circulant matrix Mp on the main block diagonal we use the matrix
Mf of the one-dimensional system with free boundary conditions. To calculate the
eigenvalues αf

nm, we follow the same pattern as in the cylindric case: We make the
same ansatz for the Ψ, but use eigenvectors un of the matrix Mf (instead of the eigen-
vectors of Mp):

Ψ = (z1un, ..., zMun). (A.75)

Performing exactly the same calculations as in Sec. II.2.2.2, we obtain the eigenvalues
αf

nm:

αf
nm = −1 + K cos θn + K cos θm = −1 + K cos π n

N+1 + K cos π m
M+1 . (A.76)

Again, one should note the similarity to the toroidal and the cylindric eigenvalues,
see Eq. (A.53), Eq. (A.53).

Inverse interaction matrix

The interaction matrix of the two-dimensional Gaussian model with free boundary
conditions is block Toeplitz. The results presented in this section are taken from [14],
which also contains a detailed discussion of the properties of Toeplitz and block
Toeplitz matrices. The inverse of the interaction matrix is again block Toeplitz: We
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denote the position of the block with the first pair of indices and the position in the
block with the second pair of indices. The inverse M2d

f reads

(
M2d

f

)−1

(i,j)(m,n)
=

4
(N + 1)(M + 1)

M

∑
k=1

N

∑
l=1

sin i k π
M+1 sin j k π

M+1 sin m l π
N+1 sin n l π

N+1

−1 + K cos k π
M+1 + K cos l π

N+1
.

(A.77)

Similar to the one-dimensional Gaussian chain with free boundaries, the eigenvec-
tors Ψn,m read

Ψn,m(i, j) =

√
4

(N + 1)(M + 1)
sin i n

π

N + 1
sin j m

π

M + 1
. (A.78)
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A.3. Chebyshev polynomials

In this section we define the Chebyshev polynomials which are closely related to
Toeplitz matrices. We list and briefly discuss the most important properties of the
Chebyshev polynomials which were used throughout this work. One can define the
Chebyshev of the first kind Tn through the following recursion relation:

Tn+1(x) = 2x Tn(x)− Tn−1, (A.79)
T0(x) = 1, (A.80)
T1(x) = x. (A.81)

Tn is a polynomial of n-th degree. An alternative representation is

Tn(x) =

{
cos(n arccos(x)), |x| ≤ 1,
cosh(narccosh(x)), |x| > 1.

(A.82)

The zeros xk of Tn are

xk = cos
(

π
2k− 1

2n

)
, k = 1, ..., n. (A.83)

All zeros lie in the interval [−1, 1]. Furthermore the following equations hold:

Tn(1) = 1, (A.84)
Tn(−1) = (−1)n (A.85)

The Chebyshev polynomials of the second kind Un follow the recursion

Un+1(x) = 2x Un(x)−Un−1(x), (A.86)
U0(x) = 1, (A.87)
U1(x) = 2x. (A.88)

Un is a polynomial of n-th degree. Alternatively it can be represented through
trigonometric functions:

Un(x) =
sin((n + 1) arccos x)

sin arccos x
. (A.89)

The zeros are

xk = cos
(

π
k

n + 1

)
, k = 1, ..., n. (A.90)

Furthermore,

Un(1) = n + 1, (A.91)
Un(−1) = (n + 1)(−1)n. (A.92)

There is a relation between the Chebyshev polynomials of the first and the second
kind:

T′n = nUn−1. (A.93)
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A.4. Euler-Maclaurin summation formula

In this section, we formulate the Euler-Maclaurin formula for numerical integration
and discuss its most important properties (see [17] for details on the Euler-Maclaurin
formula). Let f : [a, b]→ R, f ∈ C2r+2, r ≥ 0. To approximate the integral I( f ),

I( f ) :=
∫ b

a
dx f (x), (A.94)

we define the N-th trapezoidal sum TN ≡ TN( f ):

TN := h
f (a) + f (b)

2
+ h

N−1

∑
k=1

f (xk) (A.95)

where h = (b− a)/N is the step width and xk = a + (b− a)k/N are the grid points.
The Euler-Maclaurin summation formula reads:

TN( f )− I( f ) =
r

∑
i=1

τi( f ) h2i + Rr+1(h), (A.96)

where the decay of the remaining term R is

Rr+1(h) = O
(
h2r+2) (A.97)

and the coefficients τi read:

τi( f ) =
B2i(0)
(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)
. (A.98)

Here, f (n) is the n-th derivative of f and Bi is the i-th Bernoulli polynomial, see [1],
[15]. Important properties of the Bernoulli polynomials, which are be used through-
out this work are:

B2n−1(x) = −B2n−1(1− x), (A.99)

B2n−1

(
1
2

)
= 0, (A.100)

B1(0) = −
1
2

, (A.101)

B2n−1(0) = 0, for n > 1. (A.102)

A case of particular interest for this work is the case of periodic functions: Let f ∈
Cn([a− ε, b + ε)), n ∈ N be (b− a)-periodic, i.e. f (x + b− a) = f (x). The error of
the approximation of I( f ) by TN( f ) can be expressed as:

|TN( f )− I( f )| = O(hn). (A.103)
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Therefore, for smooth periodic function the difference decays faster than any natural
power of N:

|TN( f )− I( f )| = O(N−n), ∀n ∈N. (A.104)

Throughout this work the Euler-Maclaurin formula is being applied to smooth func-
tions f , which are a function of the cosine for numerical integration over the interval
[0, π]. Such functions are not necessarily π-periodic. Nevertheless the approxima-
tion error decays faster than any power of the number of discretisation steps N. The
reason for this is that

1. The coefficients τk of the algebraically decaying contributions are proportional
to f (2k−1)(π)− f (2k−1)(0), k ∈N.

2. It is f (2k−1)(π) = f (2k−1)(0), ∀ k ∈ N for functions f which are functions of
cos only.

We look closer at the second claim: Let f be a function of cos only:

f (ϕ) = g(cos(ϕ)), (A.105)

with a smooth g. We prove that all odd derivatives of f vanish at ϕ = 0 and ϕ = π.
The first derivative reads

f ′(ϕ) = −g′(cos ϕ) sin(ϕ), (A.106)

in particular

f ′(0) = f ′(π) = 0. (A.107)

The second derivative reads

f ′′(ϕ) = g′′(cos(ϕ)) sin2(ϕ)− g′(cos ϕ) cos(ϕ)

= g′′(cos(ϕ))
(
1− cos2(ϕ)

)
− g′(cos ϕ) cos(ϕ) = h(cos ϕ). (A.108)

Obviously, the second derivative is a function of cos(ϕ) only. Therefore, the third
derivative vanishes at 0 and π. The claim follows by induction.
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